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Abstract

Arguments from noncommutative geometry are useful to the study
of infinite dimensional geometry. For example, applying such argu-
ments together with ζ-regularization, we can define Grassmann algebra
with ∞− p-forms. In this paper, we apply noncommutative geometric
arguments and ζ-regularization to the calculus of (∞− p)-forms. We
show exactness of exterior differentiable (∞− p)-forms and try to jus-
tify physists’ answer of infinite dimensional Gaussian integral by using
Ray-Singer determinant.
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1 Introduction

Noncommutative geometry is a powerful tool not only for physics but also
for infinite dimensional geometry (cf. [1],[3], [10], [11],[15]). For example, a
mapping space Map(X,M) can be viewed as a Sobolev manifold modeled by
H = W k(X). Here W k(X) is a Sobolev space over X. If X is a compact spin
manifold, with suitable modification to Map(X, M), we may regard W k(X)
to be the Sobolev space of spinor fields on X. In this case, the Dirac operator
D/ of X induces a polarization ε = P+−P− of H. Here P± are the positive and
negative peoper spaces of D/, respectively. The principle of noncommutative
geometry asserts {H, ε} gave geometric information of X. For example, if G
is a linear Lie group, Map(X, G) is contained in the restricted general linear
group GLp = {T ∈ GL(H)|[ε, T ] ∈ Ip}, p > d/2, where GL(H) is the group
of all inversible bounded linear opertors of H, Ip is the p-th Schatten ideal,
and d is the dimension of X. The topological structure of a GLp-bundle
{gUV } is completely determined by the noncommutative connection {κU},

κU : U 7→ Ip, (ε + κU )gUV = gUV (ε + κV ),

([1]). To get more precise information than topology, we use the pair {H, G},
where G is a nondegenerate Schatten class operator such that its ζ-function
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ζ(G, s) is holomorphic at s = 0 ([2], [3]). Considering such pairing is closely
related to Connes’ spectral triple ([9]). Our approach is narrow than Connes’
approach but more concrete. If H = W k(X), we take G to be the Green
operator of a nondegenerate selfadjoint elliptic (pseudo) differential operator
on X. For simple, we assume positivity of G in this paper. In abstract
setting, we introduce Sobolev norm ‖x‖k by ‖G−kx‖. The Sobolev space by
the norm ‖x‖k is denoted by W k. The complete orthonormal basis {en} of
H is taken by proper vectors of G; Gen = µnen. Here we arrange {µn} to be
µ1 ≥ µ2 ≥ . . . > 0. Then the complete orthonormal basis of W k is given by
{en,k}, en,k = µ−k

n en. The coordinate of x ∈ W k is fixed to be (x1, x2, . . .),
x =

∑
xnen,k.

We say ν = ζ(G, 0) to be the regularized dimension of H (and W k).
Other invariants of the pair {H,G} are the position d of the first pole of
ζ(G, s) and detG = exp(ζ ′(G, 0)). By using these invariants, we have defined
(∞− p)-forms on W k and investigated their calculus including exactness of
exterior differentiable (∞−p)-forms ([2],[3]). In this paper, we reinvestigate
these definitions and results. Regularization of integrals of ∞-forms by
using fractional calculus (cf.[13]) and ζ-regularization has been defined in [4].
Corresponding regularization procedure of exterior differential of (∞− p)-
forms is introduced and related to the regularization of differential operators
on H ([3],[6]). Then as an example of regularized integral of ∞-forms, an
attempt of mathematical justification of the formula

∫
e−2π(x,Dx)Dx =

1√
detD

,

where detD is the Ray-Singer determinant of D (cf. [8], [14],[16]), is given.
We also try to compute regularized volume of ”sphere” in H. The answer is
not yet obtained. But our calculation sugests the regularized volume might

be
2πν/2

Γ(ν
2 )

as expected.

2 Grassmann algebra with (∞− p)-forms

We introduce the Sobolev duality between W k and W−k by

〈x, ξ〉 = 〈G−kx, Gkξ〉, x ∈ W k, ξ ∈ W−k. (1)

By definition, W k is contained in W l if k > l. We set

W k+0 =
⋃

l>k

W l, W k−0 =
⋂

l<k

W l. (2)

If k = 0, we denote H± instead of W±0. In W k−0, we set

e∞,k =
∞∑

n=1

µd/2
n en, k. (3)
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e∞, k depends on the choice of {en}. But we do not specify {en} for simple.

Definition. We set

W k−0(0) = {
∑

xnen,k ∈ W k−0| lim
n→∞µ−d/2

n xn = 0}, (4)

and define the space W k−0(finite) by

W k−0(finite) = W k−0(0)⊕ Re∞,k, or W k−0(0)⊕ Ce∞,k, (5)

according to W k is a real vactor space or a complex vector space.

We consider W k−0(0) to be a subspace of W k−0. But W k−0(finite) is
considered to be a product space of W k−0(0) and R or C as a topological
space.

Since W k−0(0) is dense in W k−0, the dual space of W k−0(0) is W−k+0.
We define the dual element e†∞,k of e∞,k by

〈e†∞,k, x〉 = lim
s→+0

s

c
〈
∑

µd/2+s
n en,−k, x〉, x ∈ W k−0, (6)

where c = Ress=0ζ(G, s). But since e∞,k and e†∞,k are not symmetric each
other, we introduce ek by

〈ek, x〉 = lim
s→+0

√
s

c
〈
∑

µ(d+s)/2
n en,k, x〉, x ∈ W k−0. (7)

Since c = lims→d+0(s−d)ζ(G, s), c is positive, so ek is well defined although
W k is a real vector space.. By definition, we may write

ek = G2ke−k, or ek = ∗e−k,

where ∗ is the Hodge operator ([2]). By definition, we also have

〈ek, e−k〉 = 1, 〈ek, en,−k〉 = 〈en,k, e−k〉 = 0.

Hence we may set

(W−k+0 ⊕Ke−k)† = W k−0 ⊕Kek, (8)

where K is either of R or C.

Since Map(X, M) is a Sobolev manifold modeled by W k(X), where k
is larger than dimX/2, differential forms of Map(X, M) take the values in
Gr(W−k(X), the Grassmann algebra over W−k(X). So we treat Gr(W−k+0)
and denote the generators of this algebra corresponding to en,−k by dxn.
We also introduce d∞x as the element corresponding to ek and regard it as
the infinite product dx1 ∧ dx2 ∧ . . .. We denote Gr if forget multiplicative
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structure of Gr and regard only as a module. We give the left Gr(W−k+0)-
module structure to Gr(W k−0)⊗ d∞x by

(dxi1 ∧ . . . ∧ dxip) ∧ (dξj1 ∧ . . . ∧ dξjq)⊗ d∞x = 0,

{i1, . . . , ip} 6⊂ {j1, . . . , jq}, (9)
(dxi1 ∧ . . . ∧ dxip) ∧

∧(
(dξi1 ∧ . . . ∧ dξip) ∧ (dξj1 ∧ . . . ∧ dξjq)

)⊗ d∞x

= (−1)(i1−1)+···+(ip−p)(dξj1 ∧ . . . ∧ dξjq)⊗ d∞x,

{i1, . . . , ip} ∩ {j1, . . . , jq} = ∅. (10)

In the rest, we denote

d∞−{i1,...,ip}x = (dxi1 ∧ . . . ∧ dxip)⊗ d∞x. (11)

We thought d∞−{i1,...,ip}x to be

dx1 ∧ . . . ∧ dxi1−1 ∧ dxi1+1 ∧ . . . ∧ dxip−1 ∧ dxip+1 ∧ . . . .

In Gr(W k−0)⊗ d∞x, elements written as
∑

I fId
∞−Ix, I = {i1, . . . , ip} are

said to be (∞− p)-forms and denoted by φ∞−p, etc.. Then we define wedge
product of p-form or (∞− p)-form and (∞− q)-form by (9), (10) and

φ∞−p ∧ ψ∞−q = 0, (12)
φp ∧ ψ∞−q = (−1)p(ν−q)ψ∞−q ∧ φp, −1 = eπi, (13)
ψ∞−q ∧ φp = (−1)(ν−q)pφp ∧ ψ∞−q, −1 = e−πi, (14)

when W k is a complex vector space. Here ν is arbitrary and need not assume
integrity. While if W k is a real vector space, we need to assume integrity of
ν(cf. [5]).

Definition. The algebra Gr(W−k+0)⊕Gr(W k−0)⊗d∞x with the wedge
product defined by the rules (9), (10) and (12) - (14) is said to be the
Grassmann algebra with ∞ -forms and denoted by Gr∞(W−k+0).

Note. Commutaion relations (13) and (14) are same those of generators
of noncommutative torus (or matrices algebra) when ν is not a rational num-
ber (or a rational number) (cf. [12]). We ask are there any relation between
Grassman algebra with ∞-forms (or Clliford algebra with ∞-spinors, which
is defined by the same way ([5])) and noncommutative torus (or matrices
algebra) (cf. [7]).

3 Exterior differential of (∞− p)-forms

Similar to the finite degree forms exterior differential of an (∞ − p)-form∑
fId

∞−Ix is defined by

d(
∑

I

fId
∞−Ix) =

∑

I

dfI ∧ d∞−Ix, df =
∞∑

n=1

∂f

∂xn
dxn. (15)
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But since

d(
∑

i1,...,ip+1

fi1,...,ip+1d
∞−{i1,...,ip+1}x)

=
∑

i1,...,ip

(p+1∑

k=0

∑

ik<j<ik+1

(−1)j−k ∂fi1,...,ik,j,ik+1,...,ip

∂xj

)
d∞−{i1,...,ip}x,

where i0 < j < i1 and ip < j < ip+1 mean j < i1 and ip < j, respectively,
dφ∞−p diverges in general. We say φ∞−p is exterior differentiable if dφ∞−p

converges.

Note. φ∞−p is expressed as alternative function f(x) = f(x, x1, . . . , xp) :
W k → W k. Denoting Fréchet differential of f by d̂f , df is given by

df(x, x1, . . . , xp−1) = (−1)p−1trd̂f(x, x1, . . . , xp−1, x).

So to define df , we need to assume d̂f to be a trace class operator. This is
a coordiante free definition of exterior differentiable form ([3]).

Theorem 1. An exterior differentiable (∞− p)-form is exact.
Proof. Since Theorem is true if p = 0, first we prove Theorem for (∞−

1)-form φ =
∑

fnd∞−{n}x. First we note that if φ is exterior differentiable,
then there exists a constant M > 0 such that

|
N∑

n=1

(−1)n−1 ∂fn

∂xn
| ≤ M, (16)

for all N . The equation φ = dψ, ψ =
∑

n gn,n+1d
∞−{n,n+1}x is equivalent

to the system

∂g1,2

∂x2
= f1, (−1)n−2(

∂gn−1,n

∂xn−1
− ∂gn,n+1

∂xn+1
) = fn, n ≥ 2. (17)

A solution of this system is given by

g1,2 =
∫ x1

0
f1dt, gn,n+1 =

∫ xn+1

0
((−1)n−1fn +

∂gn−1,n

∂xn+1
)dt.

Since

g2,3 =
∫ x2

0
(−f2 +

∂

∂x1

∫ x2

0
f1dτ)dt =

∫ x3

0
(−f2 +

∫ x2

0

∂f1

∂x1
dτ)dt,

we get
∂g2,3

∂x2
=

∫ x3

0
(−∂f2

∂x2
+

∂f1

∂x1
)dt.
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We assume

∂gn−1,n

∂xn−1
=

∫ xn

0
(
n−1∑

i=1

(−1)i−1 ∂fi

∂xi
)dt. (18)

Then, since

∂gn,n+1

∂xn+1
= (−1)n−1fn +

∂gn−1,n

∂xn−1
= (−1)n−1fn +

∫ xn

0
(
n−1∑

i=1

(−1)i−1 ∂fi

∂xi
)dt,

we obtain

∂gn+1,n+2

∂xn+2
= (−1)nfn+1 +

∂gn,n+1

∂xn
=

= (−1)nfn+1 +
∂

∂xn

∫ xn+1

0

(
(−1)n+1fn +

∫ xn

0

n−1∑

i=1

(−1)i−1 ∂fi

∂xi
dτ

)
dt

= (−1)nfn+1 +
∫ xn+1

0
(

n∑

i=1

(−1)i−1 ∂fi

∂xi
)dt.

Hence we get
∂gn,n+1

∂xn
=

∫ xn+1

0
(

n∑

i=1

(−1)i−1 ∂fi

∂xi
)dt. Therefore (18) is hold

for any n ≥ 1.
If φ is exterior differentiable, we have

|∂gn,N+1

∂xn
| ≤ |xn+1|M, (19)

by (16). Since
∑ |xn|2 < ∞,

∑
gn,n+1d

∞−{n,n+1}x converges by (19). Hence
THeorrem holds if p = 1.

Let p ≥ 2 and J = {j1, . . . , jp}, j1 < · · · < jp be a set of natural
numbers. We give the lexicographic linear order to the set J . Let J ′ be the
set {j1, . . . , jp−1} and write an ∞− p-form φ as follows:

φ =
∑

J ′

∑

i>jp−1

f{J ′,i}d∞−{J
′,i}x. (20)

Then formally dφ is given by

dφ =
∑

J ′
(
∑

k∈J ′

∂f{J ′,j}
∂xk

dxk ∧ d∞−{J
′,j}x) +

+
∑

j>jp−1

(−1)j+p ∂f{J ′,j}
∂xj

d∞−{J
′,j}x.
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Hence if φ is exterior differentiable, there exist constants MJ ′ > 0 such that

|
∑

j≤N

(−1)j ∂f{J ′,j}
∂xj

| < MJ ′ , (21)

for all N > jp−1. The following sum also converges.

∑

J ′

∑
(−1)j ∂f{J ′,j}

∂xj
. (22)

Let ψ be an (∞− p− 1)-form such that dψ = φ and

ψ =
∑

J ′

∑

i>jp−1

g{J ′,i,i+1}d∞−{J
′,i,i+1}x.

Then, since

dψ =
∑

J ′

(
(

∑

k<jp−1,k 6∈J ′
(±∂g{J ′,k,jp−1+1}

∂xk
+

+(−1)jp−1−p+1
∂g{J ′,jp−1+1,jp−1+2}

∂xjp−1+2
)d∞−{J

′,jp−1+1}x) +

+
∑

j>jp−1+1

(−1)j+p(
∂g{J ′,j+1,j+2}

∂xj+2
− ∂g{J ′,j,j+1}

∂xj+2
)
)
d∞−{J

′,j+1}x,

it must be

f{J ′,jp−1+1} = (
∑

k<jp−1,k 6∈J ′
±∂g{J ′,k,jp−1+1}

∂xk
) +

+(−1)jp−1−p+1
∂g{J ′,jp−1+1,jp−2+2}

∂xjp−1+2
, (23)

f{J ′,j} = (−1)j+p(
∂g{J ′,j+1,j+2}

∂xj+2
− ∂g{J ′,j,j+1}

∂xj
), (24)

where j > jp−1 +1, in (24). Since the right hand side of (23) is a finite sum,
we set

f{J ′,jp−1+1} = f{J ′,jp−1+1} −
∑

k<jp−1,k 6∈J ′
±∂g{J ′,kp−1+1}

∂xk
.

Similar to the case p = 1, g{J ′,j,j+1}, j > jp−1 + 1 are determined by

g{J ′,jp−1+1,jp−2+2} =
∫ xjp−1+1

0
f{J ′,jp−1+1}dt,

g{J ′,j,j+1} =
∫ xj+1

0
(−1)j+p(f{J ′,,j} −

∂g{J ′,j−1,j}
∂xj

)dt, j > jp−1 + 1.
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Then by (21) and convegence of (22), ψ converges if φ is exterior differen-
tiable. Hence we have Theorem.

Note. Theorem 1 shows d2 6= 0 on the space of (∞ − p)-forms. For
example, let ψ be

∑
(1− 1/2n)xnxn+1d

∞−{n,n+1}x, then

dψ =
∑

(−1)n xn

2n
d∞−{n}x, d2ψ = −d∞x 6= 0.

Since we have d(fφ) = df ∧ φ + fdφ, where f is a smooth function, we
obtain

d2(fφ) = d2f ∧ φ− df ∧ dφ + df ∧ dφ + fd2φ = fd2φ.

Hence by induction, we get

d2n(fφ) = fd2nφ, (25)
d2n+1(fφ) = df ∧ d2nφ + fd2n+1φ. (26)

If φ = dψ, then ψ is exterior differentiable. Hence ψ = dυ for some
υ. That is φ = d2υ. By (25), by using smooth partition of unity, υ exists
globally. Hence if an∞−p-form φ is exterior differentiable, then φ is globally
exact.

4 Regularized exterior differential

We have defined the action Gs to the spaces W k, etc. ([6]). We also define

GsGt
: GsGt

en = µsµt
n

n en. (27)

GsGt
acts on the space of infinite differential forms if s and t large.

Explicitely, we ahve

GsGt
d∞−{i1,...,ip}x = µ

sµt
i1

i1
· · ·µsµt

ip

ip

∞∏

j=1

µ
sµt

j

j d∞−{i1,...,ipx. (28)

Since Ray-Singer detrminant detG is the analytic continuation of
∞∏

n=1

µµt
n

n to

t = 0, we have by (28)

GsGt
d∞−{i1,...,ip}x|t=0 = µs

i1 · · ·µs
ip(detG)−sd∞−{i1,...,ip}x. (29)

Here |t=0 means analytic continuation to t = 0. For simple, hereafter we use
the notation

Gs,∗φ =
∑

I

fIG
sGt

d∞−Ix|t=0, φ =
∑

I

fId
∞−Ix. (30)
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Definition. We define the regularized exterior differential : d : φ by

: d : φ = d(Gs,∗φ)|s=0. (31)

Note 1. We may ignore the factor (detG)s in the definition of Gs,∗φ,
because we are working on a flat space. If we work on a curved space, this
factor might have meanings.

Note 2. We may define regularized exterior differential for finite degree
forms. But in this case, we have : d : α = dα.

Example. Let ω be
∑

(−1)n−1d∞−{n}x. Then dω diverges. But, since

Gs,∗(ω) =
∞∑

n=1

(−1)n−1µs
n(detG)−sxnd∞−{n}x,

we have
: d : ω = ζ(G, s)(detG)sd∞x|s=0 = νd∞x.

Similarly, we obtain

: d : (raω) = (a + ν)d∞x, r =
√∑

x2
n. (32)

Especially, : d : (r−νω) is equal to 0 as expected.

For simple, we denote Gs,∗ω = ω(s). ω(s) is exterior differentiable if
s > d. Formally, we have

ω(s) = dψ(s), ψ(s) =
∑

(−1)n(
n∑

i=1

µs
i )xnxn+1d

∞−{n,n+1}x.

ψ(s) converges if s > d/2. Therefore ω(s), d ≥ s > d/2, is not exterior
differentiable, but exact. In other word, the space of exact (∞− p)-forms is
wider than the space of exterior differentiable (∞− p)-forms.

By definition, we have Gs,∗(Gt,∗φ) = Gs+t,∗φ, we have

: d : (: d : φ) = d2Gs+t,∗φ|s=0,t=0.

Hence to define : dm : φ by dmGs,∗φ|s=0, we have

: dm := (: d :)m. (33)

In [3], we defined formal adjoint δ of d by

δup = (−1)p ∗−1 d ∗ up, δφ∞−p = (−1)p ∗ν−p d ∗ φ∞−p, (34)

where ∗ is the Hodge operator defined in [2]. By (34), we define regularized
formal adjoint of d by

: δ : up = (−1)p : d : ∗up, : δ : φ∞−p = (−1)p∗ν−p : d : ∗φ∞−p. (35)
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Then we have

: 4 :=: d :: δ : + : δ :: d :, (36)

where : 4 : is the regularized Laplacian defined in [6].

Note. Theorem 1 shows we can not expect to get de Rham theory by
using (∞−p)-forms. Precisely, denoting the spaces of (∞−p)-forms, exterior
differentiable (∞− p)-forms and closed (∞− p)-forms on U , an open set of
W k−0(finite), by C∞−p(U), E∞−p(U) and B∞−p(U), respectively, we have

C∞−p(U) ⊃ dE∞−(p+1)(U) ⊃ E∞−p(U) ⊃ B∞−p(U), (37)
dE∞−(p+1)(U) ∼= E∞−(p+1)(U)/B∞−(p+1)(U). (38)

We also denote E∞−p
k (U), 1 ≤ k ≤ p, the space of (∞− p)-forms on U such

that dk is defined. Then we have

E∞−p(U) = E∞−p
1 (U) = dE∞−(p+1)

2 (U),

dE∞−(p+1)(U)/E∞−p(U) = dE∞−(p+1)
1 (U)/E∞−(p+1)

2 (U).

In general, since B∞−p(U) ⊂ E∞−p
k (U) for all k, we get

dE∞−(p+1)
k (U)/dE∞−(p+1)

k+1 (U) = E∞−(p+1)
k /E∞−(p+1)

k+1 (U).

On the other hand, we have E∞−q
k (U) = dE∞−(q+1)

k−1 (U), k ≥ 2. Hence to
denote dE∞−(p+1)(U)/E∞−p(U) by F∞−p(U), we obtain the descent formula

F∞−p(U) ∼= E∞−(p+k)
k /E∞−(p+k)

k+1 (U). (39)

We also introduce the kernel space B∞−p
k (U) of dk. Then by the map

φ → dkφ, we have

B∞−p+k
m−k (U) ∼= B∞−p

m (U)/B∞−p
k (U). (40)

(39) and (40) may have relation to de Rham complexes with dN = 0
(cf.[7]).

By using regularized exterior differential : d :, we define the spaces
E∞−p

reg (U), B∞−p
reg (U) and B∞−p

k,reg(U), similarly. By definitions, E∞−p
reg (U) con-

tains B∞−p
reg (U) and

: d :: E∞−(p+1)
reg (U) ∼= E∞−(p+1)

reg (U)/B∞−(p+1)
reg (U), (41)

: dk :: B∞−p+k
m−k,reg(U) ∼= B∞−p

m,reg(U)/B∞−p
k,reg(U). (42)

But the relation between : d : E∞−(p+1)
reg (U) and E∞−p

reg (U) is not known.
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5 Regularized integral of (∞− p)-forms

To define regularization of infinite dimensional integral on a qube domain

Q(a) = {
∑

xnen,k|0 ≤ xn ≤ an}, a = (a1, a2, . . .),

contained in W k−0(finite), we use fractional integral
∫ a

0
f(x)dcx =

1
Γ(c)

∫ a

0
(a− x)c−1f(x)dx,

(cf. [4], [13]), and introduce the following operation.

Ic
Q(a)(f) = lim

n→∞Γ(1 + c1)
∫ an

0

(
Γ(1 + c2)

∫ an−1

0
· · ·

· · · (Γ(1 + c1)
∫ a1

0
fdc1x) · · · dcn−1x

)
dcnx, (43)

where c = (c1, c2, . . .). We denote ζ(G, s Gt) instead of c if c1 = µ
sµt

1
1 ,

c2 = µ
sµt

2
2 , and so on. Then in [4], the regularized integral

∫
Q(a) fd∞ : x :

was defined by
∫

Q(a)
fd∞ : x := (Iζ(G,sGt

)
Q(a) (f)|t=0)|s=0. (44)

Here f is a function on Q(a) with suitable regularity. For example, we have
∫

Q(a)
1d∞ : x :=:

∏
an :, (45)

where :
∏

an : is the regualrized infinite product defined in [4].

Note. For simple, we set

: I :ζ(G,s)
Q(a) (f) = I

ζ(G,sGt
)

Q(a) (f)|t=0. (46)

Then we have
∫

Q(a)
fd∞ : x :=: I :ζ(G,s)

Q(a) (f)|s=0. (47)

This was the definition of
∫
Q(a) fd∞ : x : in [4].

We apply this regularization procedure to justify physicists’ calculation
of the pathintegral

∫

H
e−2πi(x,Dx)Dx =

1√
detD

. (48)
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Here D is the positive nondegenerate selfadjoint elliptic operator whose
Green operator is G. The proper values of D are µ−1

1 , µ−1
2 , . . .. Since

limn→∞ µn = 0, we assume 1 > µ1 ≥ µ2 ≥ . . . > 0, for simple. Then
we have

lim
s→∞ ζ(G, s) = 0. (49)

Since e−2π(x,Dx) =
∏

e−µ−1
n 2πx2

n , to compute : I :ζ(G,s)
Q(a) (f), we need to

compute

Γ(1 + µs
n)

Γ(µs
n)

∫ an

0
(an − xn)µs

n−1e−µ−1
n 2πx2

ndxn

= µs
n(
√

µn)µs
n

∫ bn

0
(bn − ξ)µs

n−1e−2πξ2
dξ, bn =

√
µs

nan.

Since

lim
s→∞µs

n

∫ bn

0
(bn − ξ)µs

n−1e−2πξ2
dξ = e−2πb2n ,

lim
s→∞ : I :ζ(G,s)

Q(a) (e−(x,Dx)) exists, if
∑

anen ∈ H−.

Let detD be the Ray-Singer determinant e−ζ′(D,0) of D. Then, since
−ζ ′(D, s) = −ζ ′(G, s), we have

∞∏

n=1

(
√

µn)µs
n |s=0 =

1√
detD

. (50)

Hence to derive (48), it is sufficient to show

lim
bn→∞

∞∏

n−1

µs
n(2

∫ bn

0
(bn − xn)µs

n−1e−2πx2
ndxn)|s=0 = 1. (51)

bn’s may tend to ∞ independently. But for simple, we set bn = rµc
n. Then,

since

lim
r→∞ lim

s→0
µs

n2
∫ bn

0
(bn − x)µs

n−1e−2πx2
ndx = 1,

to get (51), we need to take c > 0. This shows to derive (48) according to
the regularization procedure proposed in [4], path integral should be taken
on W−d/2−c, c > 0 is arbitrary.

Since 2
∫∞
0 exp(−2πx2

n)dx = 1 and lims→0 µs
n(bn − x)µs

n−1 = 1, to show
(51), we need to evaluate 1− µs

n(bn − x)µs
n−1. We note that

log
(
(bn − x)µs

n−1
)
= (µs

n − 1) log(bn − x), µs
n − 1 =

∞∑

m=1

(log µn)m

m!
sm

12



Hence (bn− x)µs
n−1− 1 is a power series

∑
m≥1 cm(s log µn)m, where cm is a

polynomial of log(bn−x). If bn = rµc
n, then changing ξ = x/µc

n, we may set

cm(log(bn − x)) = µc
ncm(log(r − ξ) + c log µn).

Precisely saying, our regularization procedure is consisted by the following
two schemes

1 = µs
n|s=0, µs

n = µsµt
n

n |t=0.

Acording to these schemes, we replace
∏

(cn) by
∏

µs
n(cn) and rewrite

∞∏

n=1

µs
ncn =

∞∏

n=1

(
µs

n − (µs
n − µs

ncn)
)
.

To show the convergence of this infinite product, it is sufficient to show the
convergence of

∑
µs

n(1 − cn). Then, since ζ(k)(G, s) =
∑

(log µn)kµs
n, we

have
∞∑

n=1

µs
n(bn − xn)µs

n−1 =
∞∑

m=1

m∑

k=1

cm,k(log r
(
skζ(m)(s + c)

)
) + O(

1√
r
), (52)

if xn <
√

r. Since
∫

s
qrtrr(r − x)c−1e−2πx2

dx <
1
c
rc+1e−r,

these estimates on xn, n = 1, 2, . . . are sufficient to derive (50). Hence we
can apply analytic continuation of ζ(G, s) and may conclude (51).

Note. Regularized integral can be dfined for (∞− p)-forms. For exam-
ple, let S∞ be the sphere (or ellipsoid) in W k−0(finite) given by

∞∑

n=1

(µ−d/2
n xn)2 = 1,

∑
xnen,k ∈ W k−0(finite). (53)

We consider regularized integral of ω =
∑

(−1)n−1xnd∞−{n}x on S∞. For
this purpose, we set

rN (x) =
√∑

n>N

(µ−d/2
n xn)2, N = 1, 2, . . . .

Then we have

ω = x1d
∞−{1}x +

∑

n≥2

µ−d
n

µ−d
1 x1

d∞−{1}x =
µd

1

x1
d∞−{1}x,

on S∞. Because
∑

µ−d
n xndxn = 0 on S∞.
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If (x1, x2, . . .) ∈ S∞, then they satisfy

−µ
d/2
1

√
1− r1(x)2 ≤ x1 ≤ µ

d/2
1

√
1− r1(x)2,

−µ
d/2
2

√
1− r2(x)2 ≤ x2 ≤ µ

d/2
2

√
1− r2(x)2, . . . .

Hence calculation of regularized integral of ω on S∞ is reduced tothe calcu-
lation of

lim
N→∞

∏

n≤N

Γ(1 + µs
n)

∫ µ
d/2
N rN (x)

0
· · ·

∫ µ
d/2
1 r1(x)

0

2µd
1

x1
dµs

1x1 · · · 2dµs
N xN . (54)

Since we get

∫ µ
d/2
n rn(x)

0
rn−1(x)cdax

=
∫ µ

d/2rn(x)
n

0
rn(x)c

(∑
(−1)n c(c− 1) · · · (c−m + 1)µ−dm

n x2
m

m!rm(x)m

)
dax

=
∑

(−1)m c(c− 1) · · · (c−m + 1)(2m)!
m!Γ(2m + a + 1)

µ(d/2)a
n rn(x)a,

by binary expansion. Hence computation of (54) is reduced to the compu-
tation of

Γ(1 + µs
n)

∫ µ
d/2
n rn(x)

0
rn−1(x)−1+µs

1+···+µs
n−1dµs

nx. (55)

Since we have
∞∑

m=0

(−1)m c(c− 1) · · · (c−m + 1)(2m)!
m!Γ(2m + a + 1)

=
1

Γ(a)

∫ 1

0
(1− t)a−1(1− t2)cdt,

computation of the integral (55) is reduced to the computation of this last
integral.
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