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Abstract

Arguments from noncommutative geometry are useful to the study
of infinite dimensional geometry. For example, applying such argu-
ments together with (-regularization, we can define Grassmann algebra
with oo — p-forms. In this paper, we apply noncommutative geometric
arguments and (-regularization to the calculus of (0o — p)-forms. We
show exactness of exterior differentiable (0o — p)-forms and try to jus-
tify physists’ answer of infinite dimensional Gaussian integral by using
Ray-Singer determinant.
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1 Introduction

Noncommutative geometry is a powerful tool not only for physics but also
for infinite dimensional geometry (cf. [1],[3], [10], [11],[15]). For example, a
mapping space Map(X, M) can be viewed as a Sobolev manifold modeled by
H = W*(X). Here W¥(X) is a Sobolev space over X. If X is a compact spin
manifold, with suitable modification to Map(X, M), we may regard W*(X)
to be the Sobolev space of spinor fields on X. In this case, the Dirac operator
Dof X induces a polarization e = P, —P_ of H. Here Py are the positive and
negative peoper spaces of I), respectively. The principle of noncommutative
geometry asserts { H, e} gave geometric information of X. For example, if G
is a linear Lie group, Map(X, G) is contained in the restricted general linear
group GL, = {T € GL(H)|[e,T] € I,}, p > d/2, where GL(H) is the group
of all inversible bounded linear opertors of H, I, is the p-th Schatten ideal,
and d is the dimension of X. The topological structure of a GL,-bundle
{guv} is completely determined by the noncommutative connection {ky},

ky U — I, (e+ky)guv = guv(e+ Ky),

([1]). To get more precise information than topology, we use the pair { H, G},
where G is a nondegenerate Schatten class operator such that its (-function



¢(G, s) is holomorphic at s = 0 ([2], [3]). Considering such pairing is closely
related to Connes’ spectral triple ([9]). Our approach is narrow than Connes’
approach but more concrete. If H = W*(X), we take G to be the Green
operator of a nondegenerate selfadjoint elliptic (pseudo) differential operator
on X. For simple, we assume positivity of GG in this paper. In abstract
setting, we introduce Sobolev norm ||z ||, by |G~*z||. The Sobolev space by
the norm ||z||y is denoted by W*. The complete orthonormal basis {e,} of
H is taken by proper vectors of G; Ge,, = une,. Here we arrange {u,} to be
t1 > po > ... > 0. Then the complete orthonormal basis of Wk is given by
{enk}, enk = p-*e,. The coordinate of 2 € WP is fixed to be (x1,z2,...),
T =) Tpepk-

We say v = ((G,0) to be the regularized dimension of H (and W¥).
Other invariants of the pair {H,G} are the position d of the first pole of
((G, s) and detG = exp(¢’(G,0)). By using these invariants, we have defined
(00 — p)-forms on W* and investigated their calculus including exactness of
exterior differentiable (co — p)-forms ([2],[3]). In this paper, we reinvestigate
these definitions and results. Regularization of integrals of oco-forms by
using fractional calculus (cf.[13]) and (-regularization has been defined in [4].
Corresponding regularization procedure of exterior differential of (co — p)-
forms is introduced and related to the regularization of differential operators
on H ([3],[6]). Then as an example of regularized integral of co-forms, an
attempt of mathematical justification of the formula

1
—27m(z,Dx) _
e Dzx = ,
/ VdetD

where detD is the Ray-Singer determinant of D (cf. [8], [14],[16]), is given.

We also try to compute regularized volume of ”sphere” in H. The answer is

not yet obtained. But our calculation sugests the regularized volume might
27.(.1//2

be F(%)

as expected.

2 Grassmann algebra with (co — p)-forms

We introduce the Sobolev duality between W* and W~ by

(2,6) = (G, Gr), wveWh eeWw™ (1)
By definition, W* is contained in W' if k > I. We set
Wk+0 — U Wl, Wk—(] _ m Wl. (2)
>k i<k

If k =0, we denote H* instead of W0, In W*=0, we set

ook = Zu#%m k. (3)
n=1
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€0, k depends on the choice of {e,,}. But we do not specify {e,} for simple.

Definition. We set

wk=9(0) = {Z Tnenp € WEO| nango w2, =0}, (4)

and define the space W*=0( finite) by
WEO(finite) = WF0(0) @ Reao i, or WH0(0) @ Ceoo g, (5)

according to W* is a real vactor space or a complex vector space.

We consider W*=0(0) to be a subspace of W =0, But W*0( finite) is
considered to be a product space of W*=°(0) and R or C as a topological
space.

Since W*=0(0) is dense in W*=0, the dual space of W*=0(0) is W =++0,
We define the dual element 6;, i of ok Dy

where ¢ = Res;—o((G, s). But since ey 1 and el ook Ar€ MOt symmetric each
other, we introduce e; by

(ex,r) = slgfrlo Zu(d+s en,k,x), xz e Wk, (7)

Since ¢ = limg_,410(s —d)((G, s), ¢ is positive, so ey is well defined although
Wk is a real vector space.. By definition, we may write

e, = nge_k, or ep = xe_yg,
where # is the Hodge operator ([2]). By definition, we also have
(ep,e—k) =1, (ep,en—_k) = (enk,e_i) =0.
Hence we may set
(W0 g Ke_)f = WF 0 & Key, (8)

where K is either of R or C.

Since Map(X, M) is a Sobolev manifold modeled by W¥(X), where k
is larger than dimX /2, differential forms of Map(X, M) take the values in
Gr(W~F(X), the Grassmann algebra over W*(X). So we treat Gr (W —*+0)
and denote the generators of this algebra corresponding to e, _r by dx,.
We also introduce d*°x as the element corresponding to e, and regard it as
the infinite product dxy A dzs A .... We denote Gr if forget multiplicative



structure of Gr and regard only as a module. We give the left Gr (W —++0)-
module structure to Gr(W*=0) @ d>®z by

(dxiy A ..o Ndxy,) A (dg, N ... ANdE;,) @ d™°z =0,
{ila"wip} ¢ {jla“'?jq}a (9)
(dwgy Ao ANdzy,) A
A((d&iy Ao AdE) A (dEj A ..o AdE,)) ® dx
= (1) DFHEGoP) (g, AL AdE,) ® dFu,

{ir, .. ipt 0 {1, -, Jg} = 0. (10)
In the rest, we denote
Aty = (dgy A A day,) © d¥a. (11)

We thought d°°~ {11ty to be
dri N ... A dxil—l A d$i1+1 VANPIAN dlbip_l A dxip—i-l VAN

In Gr(Wk=0) @ d®x, elements written as Y ; fd®z, I = {i1,...,i,} are
said to be (0o — p)-forms and denoted by ¢>°~P, etc.. Then we define wedge
product of p-form or (co — p)-form and (oo — g)-form by (9), (10) and

¢OO—P A woo—q — 0’ (12)
G NPT = (PITDYTA G 1 =™, (13)
YETUN G = (~1)TDPG ATl 1= (14)

when W is a complex vector space. Here v is arbitrary and need not assume
integrity. While if W* is a real vector space, we need to assume integrity of
v(ct. [5]).

Definition. The algebra Gr(W ~#+9) @ Gr(W*~0)®d>z with the wedge
product defined by the rules (9), (10) and (12) - (14) is said to be the
Grassmann algebra with oo -forms and denoted by Gro° (W —++0),

Note. Commutaion relations (13) and (14) are same those of generators
of noncommutative torus (or matrices algebra) when v is not a rational num-
ber (or a rational number) (cf. [12]). We ask are there any relation between
Grassman algebra with co-forms (or Clliford algebra with co-spinors, which

is defined by the same way ([5])) and noncommutative torus (or matrices
algebra) (cf. [7]).

3 Exterior differential of (0o — p)-forms

Similar to the finite degree forms exterior differential of an (co — p)-form
3 frd* 1z is defined by

A frd>Tz) =Y dfi nd> T, df = i (,ifdxn. (15)
I I n=1 "
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But since

E o 00—{i1,...,ip41}
f117~~~71p+1d B ﬂf)

U1,eesip 1
p+1

= Z Z Z ] kafn, ,Zg,;:;k+1a -2 )doo_{il""’ip}x,

11yeentp k=01 <j<tp41

where 79 < j < i1 and i), < j < ip41 mean j < 7y and i, < j, respectively,
d¢p>~P diverges in general. We say ¢>° 7P is exterior differentiable if d¢>°~P
converges.

Note. ¢>7P is expressed as alternative function f(x) = f(z,z1,...,2p) :
W* — Wk, Denoting Fréchet differential of f by df, df is given by

df (z,z1,...,2p—1) = (=P Yrdf(z,xq,. ..  Tp—1,T).

So to define df, we need to assume ch to be a trace class operator. This is
a coordiante free definition of exterior differentiable form ([3]).

Theorem 1. An exterior differentiable (0o — p)-form is ezxact.

Proof. Since Theorem is true if p = 0, first we prove Theorem for (co —
1)-form ¢ = 3 £,d*~{"} . First we note that if ¢ is exterior differentiable,
then there exists a constant M > 0 such that

\Z ) 1af” | < M, (16)

for all N. The equation ¢ = dyp, v = >, gn,nﬂdoo_{"’"“‘l}x is equivalent
to the system

0g1,2

a n—1i,n 8 n,n
2 hi, (1) (Hntn  GInantly _p s o) (17)
T2

O0xp_1 0Tnt1

A solution of this system is given by

o1 Tpy1 Ogn—1m
91,2 =/ fidt,  gnnsr =/ (1)1 f, + D=Ly gy
0 0

0T 11

Since

92,3=/0 f2+ / frdr)dt = / (—fa+ ;2 gﬁ T)dt,

we get

0 o0 0
92,3:/0( df2 i)dt.

8%2 6952 * 8551



We assume
8gn—ln T W21 1afz
0 = 1 i 1
e [ e )

Then, since

zn N1
Wt _ i, S oty [y S
0

O0Tpi1 0xp_1 pa Ox;
we obtain
22 (1) g4 Bt
= Dt [0 [ Z( )
= 0t [

i=1

n+1 n . .
Hence we get ag(;;:rl = /0 (iz;(—l)l1 gﬁ)dt Therefore (18) is hold

for any n > 1.
If ¢ is exterior differentiable, we have

Ogn,N
|t < M, (19)
by (16). Since 3 |2,]? < 00, 3 gnmy1d>~ W1 g converges by (19). Hence
THeorrem holds if p = 1.

Let p > 2 and J = {j1,...,0p}, j1 < -+ < jp be a set of natural
numbers. We give the lexicographic linear order to the set J. Let J’ be the

set {j1,...,Jp—1} and write an co — p-form ¢ as follows:
6= 2. fuad e (20)
J'i>gp—1

Then formally d¢ is given by

6f{J7]} oco—{J
dp = > (> P ZDI e A d )
J' ked!
+ Z J+p6f{J ZIILGY geo—{ "4} .

.7>]p 1 ]



Hence if ¢ is exterior differentiable, there exist constants M > 0 such that
9,
>y < (21)
J<N

for all N > j,_1. The following sum also converges.

8f{J'J}
DRI -
J/
Let ¢ be an (0o — p — 1)-form such that dip = ¢ and
V= Z Z g{J’,i,i+1}d°°_{J'7i,i+1}x.

7 i1
Then, since
99(" kg 141}
T =
J k<jp_1,k@J’ k

+(—1)7p=17 p+lag{J Jp—1+1.Jp— 1+2})d00 {(dp1t1}y) 4

Oxj, 142
+ Z 1)7+7( O9( +1,+2) 89{J’,j,j+1}))doo—{J’,j-&-l}x,
]>]p 1+1 axﬂ+2 8.T]+2
it must be
0911 kjy 141
frrgpary = ( Z i%)—k
k<jp—_1,k&J’ k
+(_1)jp—1—p+1 ag{J’,jp,1+17jp72+2} (23)
8xjp71+2 ’
fepn = (_1)j+p(ag{J’,j+1,j+2} _ 89{J',j,j+1}) (24)
{J'.5} ;0 D ,

where j > j,—1 +1, in (24). Since the right hand side of (23) is a finite sum,
we set

aQ{J Jep— 1+1}

f{J’Jp 1+1} = f{J’ Jp—1+1} = Z + Oxy,

k<jp—1,k&J’
Similar to the case p =1, g j i1y, J > Jjp—1 + 1 are determined by

Tjp—1+1
Y p—1+1Gp—2+2} = /0 fr gy arnydt,

A 9947 j-1.4} o
g{J/7]7.7+1} = /0 ( )]er(f{JIMJ} - T)dt7 '] > jp—l + 1
J
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Then by (21) and convegence of (22), ¥ converges if ¢ is exterior differen-
tiable. Hence we have Theorem.

Note. Theorem 1 shows d? # 0 on the space of (co — p)-forms. For
example, let 1) be S(1 — 1/2")z,2p41d°~ "7 2, then

dyp = Z(—m%’jdw*{"}x, d*) = —d®z # 0.

Since we have d(f¢) = df A ¢ + fdp, where f is a smooth function, we
obtain

d*(fo) = d*f AN —df Ndp +df Ndp + fd2p = fd*¢.

Hence by induction, we get

*"(fe) = fd*"¢, (25)
AT fe) = df Nd¥g+ fdP g (26)

If ¢ = di, then v is exterior differentiable. Hence ¢ = dv for some
v. That is ¢ = d?v. By (25), by using smooth partition of unity, v exists
globally. Hence if an co—p-form ¢ is exterior differentiable, then ¢ is globally
exact.
4 Regularized exterior differential
We have defined the action G* to the spaces W, etc. ([6]). We also define
¢ e, = ufﬂzen. (27)
G acts on the space of infinite differential forms if s and t large.

Explicitely, we ahve

1

Gt j00—{i1,..yip} 8“51 s,uﬁp - s,u;- 0o—{i1,...,ip
G*™ d iy =, g, H“j d e, (28)
j=1

o0
Since Ray-Singer detrminant detG is the analytic continuation of H ,uﬁ% to
n=1
t = 0, we have by (28)
Gstdoo—{il,...,ip}x‘tzo _ Mfl . ufp(detG)_sdoo_{il""’ip}x. (29)

Here |;—¢ means analytic continuation to ¢ = 0. For simple, hereafter we use
the notation

G =[G A x|y, ¢= [ a (30)
I I
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Definition. We define the regularized exterior differential : d : ¢ by
cd: ¢ = d(G*6)| 0. (31)

Note 1. We may ignore the factor (detG)® in the definition of G**¢,
because we are working on a flat space. If we work on a curved space, this
factor might have meanings.

Note 2. We may define regularized exterior differential for finite degree
forms. But in this case, we have : d : a = da.

Example. Let w be 3 (—1)""1d>°~{"}z. Then dw diverges. But, since

G (w) = Y (=1)" il (detG) Pmpd™ M,

n=1

we have

cd:w = ((G,s)(detG)°d*x|s=p = vd*™z.

Similarly, we obtain

cd: (r'w)=(a+v)d®z, r= \/Zx%. (32)

Especially, : d : (r "w) is equal to 0 as expected.

For simple, we denote G**w = w(s). w(s) is exterior differentiable if
s > d. Formally, we have

w(s) =dy(s), (s) = Z(_l)n(z 18 )1 A~ 1+ g
i=1

¥ (s) converges if s > d/2. Therefore w(s), d > s > d/2, is not exterior
differentiable, but exact. In other word, the space of exact (oo — p)-forms is
wider than the space of exterior differentiable (oo — p)-forms.

By definition, we have G*(G%*¢) = G*Th*¢, we have
vd: (2 d: @) = d* G Pl = 4=0-
Hence to define : d™ : ¢ by d""G**$|s—0, we have
LA™ = (o d )™, (33)
In [3], we defined formal adjoint ¢ of d by
SuP = (1P« LdxuP, §¢>°7P = (1P« Pdx¢p>P, (34)

where * is the Hodge operator defined in [2]. By (34), we define regularized
formal adjoint of d by

20wl = (=1)Pdixuf, 15T = (=1)P«"TP i d s x@™P. (35)



Then we have
A=rdadi4dady (36)

where : A : is the regularized Laplacian defined in [6].

Note. Theorem 1 shows we can not expect to get de Rham theory by
using (co—p)-forms. Precisely, denoting the spaces of (co—p)-forms, exterior
differentiable (0o — p)-forms and closed (co — p)-forms on U, an open set of
WH=0( finite), by CP(U), £°7P(U) and B¥~P(U), respectively, we have

CoOTP(U) D dEX~ WD) 5 £27P(U) > BX7P(U), (37)
deoo D7) == goo= ) (17) /g~ (). (38)
We also denote £°"*(U), 1 < k < p, the space of (co — p)-forms on U such
that d* is defined. Then we have
EX(U) = £ (U) = d&;” TV U),
A=W (U) €27 (U) = de* T W) /€57 W),

In general, since B>7P(U) C £ P(U) for all k, we get

dggo—(p-&-l)(U)/dglji;(p-ﬁ-l)([]) _ g;o—(p-&-l)/g;i;(p-ﬁ-l)([]).

On the other hand, we have £ %(U) = dé’,i_l(qul)(U), k > 2. Hence to
denote d£>~PH)(17) /€%°~P(U) by F®~P(U), we obtain the descent formula

FoP(U) = g?*(ﬁ+k)/5gz(p+k)((])‘ (39)

We also introduce the kernel space By~ P(U) of d*. Then by the map
¢ — d*¢, we have

BTt U) = BT () /B (). (40)

(39) and (40) may have relation to de Rham complexes with d = 0
(ct.[7]).

By using regularized exterior differential : d :, we define the spaces

Ereg P(U), Breg P(U) and B2 P(U), similarly. By definitions, &g *(U) con-

k,reg
tains Breg ' (U) and

L £ PO 2 £ PO /Brg, PO, (41)
Ld s By TR (U) = Bk, (U) /B (U). (42)

But the relation between : d : 5,92;(”“)(U) and Ereg P'(U) is not known.
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5 Regularized integral of (oo — p)-forms

To define regularization of infinite dimensional integral on a qube domain
Q(a) = {Z xnen,k‘o <z, < an}; a= (alaa27 .. -)7

contained in W*=9( finite), we use fractional integral
| t@is = s [ Mot
x)dr = — a—x x)dz,
0 I'(c) Jo

(cf. [4], [13]), and introduce the following operation.

n—oo

e — lim I(1 " ra R
O(a) (f) im I'( +01)/0 (T( +C2)/0

(T + ) fd%x)---drta)dora, (43)
0

t
where ¢ = (c1,¢2,...). We denote ((G,s G) instead of ¢ if ¢; = u;'t,
spb

ca = 15 2, and so on. Then in [4], the regularized integral fQ( a) fd® :x:
was defined by

SGt
fd x = (15 (F)li=0)ls=o. (44)
Q(a)
Q(a)
Here f is a function on @(a) with suitable regularity. For example, we have

1d>®:x = |]an:, (45)
o =1L

where : [ ayp, : is the regualrized infinite product defined in [4].

Note. For simple, we set

G,s G,sGt
g (N =150 (Dli=o. (46)
Then we have
fd o= 10 (f)lamo (47)
Q(a)

This was the definition of fQ( a fd @ in [4].

We apply this regularization procedure to justify physicists’ calculation
of the pathintegral

. 1
e—2m(x,Dr)D1: — ) 48
/H VdetD (48)
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Here D is the positive nondegenerate selfadjoint elliptic operator whose

Green operator is G. The proper values of D are ,ul_l,,u; L ... Since
limp oo i, = 0, we assume 1 > pg > po > ... > 0, for simple. Then
we have
lim ¢(G,s) =0. (49)
S§—00

Since e~ 27(®D7) — He’“#z”%, to compute : 1 :g(i’)s) (f), we need to
compute

(1 s an R _
(ﬂ%w/<%—mwlwﬁm%%
M, 0

bn,
s s s _ —o 2
= () / (b — €L, by = /i an.

Since ,
hm@/<%—w@%%@@—emi
0

§—00

lim : [/ C(( )) (e~ @®DP2)) exists, if S anen, € H™.

S—00
Let detD be the Ray-Singer determinant e <'(P0) of D. Then, since
—¢'(D, s) = —('(G, s), we have

a 1
Vi) =g = . 50
];[ fin )" s=0 = — (50)

Hence to derive (48), it is sufficient to show

lim H Lo ( / (b, —x )“’Sfle*z”%dazn)\szo =1. (51)

n—>OO

b,’s may tend to co independently. But for simple, we set b, = ruf,. Then,
since X
lim lim pf2 / (bp — 2)Fn e 20 dy = 1,
r—oo s—0 0
to get (51), we need to take ¢ > 0. This shows to derive (48) according to
the regularization procedure proposed in [4], path integral should be taken
on W=942=¢_¢ > 0 is arbitrary.
Since 2 [;* exp(—27x2)de = 1 and lim,_g p5 (by — x)*» 1 = 1, to show
(51), we need to evaluate 1 — s (b, — z)*»~1. We note that

12



Hence (b, — x)*n~1 — 1 is a power series > m>1Cm(slog un)™, where ¢y, is a
polynomial of log(b,, — ). If b, = ru&, then changing & = z/u¢, we may set
Cm(10g<bn - .%')) - M%Cm(log(r - 5) + clog Mn)'

Precisely saying, our regularization procedure is consisted by the following
two schemes

t
L= pipls=0, iy = " |e=o-
Acording to these schemes, we replace [[(c,) by [] 15 (¢n) and rewrite

o

H pren = [T (5 = (5, — 1en))

n=1

To show the convergence of this infinite product, it is sufficient to show the
convergence of 3" pf(1 — ¢,). Then, since (¥)(G,s) = S (log un)* s, we
have

Zunb ) = 30 S elog (5 ) + O, (52

m=1 k=1

if z, < +/r. Since

1 —9ry2 1 B
/qrtr’”(r —x) e dy < —pctlem,
c
S

these estimates on x,,n = 1,2,... are sufficient to derive (50). Hence we
can apply analytic continuation of (G, s) and may conclude (51).

Note. Regularized integral can be dfined for (oo — p)-forms. For exam-
ple, let S> be the sphere (or ellipsoid) in W*=9( finite) given by

S =1, Y wnens € WE(finite). (53)
n=1

We consider regularized integral of w = 3. (—=1)""'z,d>*~{"z on . For
this purpose, we set

ry(z) = Z (u;d/Qa:n)2, N=12,....

n>N

Then we have

d
w = xd®" {1}x+z Mn Hn goo—{1}, ﬂdoo—{l}:m
nso M1 Yy 21

on S*. Because Yy, @ dr, =0 on S,
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If (x1,x9,...) € S, then they satisfy

P (@) <@ < VT (@),
s> VT=ra(@)? < w2 < VI = (@),

Hence calculation of regularized integral of w on S*° is reduced tothe calcu-
lation of

d/2
py TN (@) m' () 9d .
lim I‘(1—|—,ufl)/ / gy - 2dMN . (54)
N—oo NN 0 0 T
Since we get
TG
/ rn—1(x)dx
0
d/2rn (x)
Hn cle=1)-(c—m+ D 9ma?
— c —1)" n my e
[ e Pt )

mclc—1)---(c—m+1)(2m)! a a
= Yo nzlr(z‘(m+a+1§( Cut

by binary expansion. Hence computation of (54) is reduced to the compu-
tation of

pir *ra(a) s s
F(l—i—,u,il)/ P (2) TR g g (55)
0

Since we have

i(_l)mc(c —1)---(c=m+1)(2m)!

= m!T'(2m +a + 1)
1 ' 1 2
= 1—t)* (1 —¢t>)dt
P(a)/o ( an )y,

computation of the integral (55) is reduced to the computation of this last
integral.
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