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Abstract

The purpose of this paper is to introduce several basic theorems of coherent
states and generalized coherent states based on Lie algebras su(2) and su(1,1), and
to give some applications of them to quantum information theory for graduate
students and/or non—experts who are interested in both Geometry and Quantum
Information Theory.

In the first half we make a general review of coherent states and generalized
coherent states based on Lie algebras su(2) and su(1,1) from the geometric point of
view and, in particular, prove that each resolution of unity can be obtained by the
curvature form of some bundle on the parameter space.

We also make a short review of Holonomic Quantum Computation (Computer)
and show a geometric construction of the well-known Bell states by making use of

generalized coherent states.
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In the latter half we apply a method of generalized coherent states to some
important topics in Quantum Information Theory, in particular, swap of coherent
states and cloning of coherent ones.

We construct the swap operator of coherent states by making use of a generalized
coherent operator based on su(2) and show an “imperfect cloning” of coherent states,
and moreover present some related problems.

We also present a problem on a possibility of calculation or approximation of
coherent state path integrals on Holonomic Quantum Computer.

In the Appendix some related advanced topics are discussed.

In conclusion we state our dream, namely, a construction of Geometric Quan-

tum Information Theory.



1 Introduction

This paper is the pair to the preceding one [18] and the aim is to introduce geometric
aspects of coherent states and generalized coherent ones based on Lie algebras su(1,1)
and su(2) and to apply them to quantum information theory for graduate students and/or
non—experts (in this field) who are interested in both Geometry and Quantum Information
Theory.

Coherent states or generalized coherent states play a crucial role in quantum physics,
in particular, quantum optics, see [1] and its references or [2], [3]. They also play an
important one in mathematical physics, see [4] or [5]. For example, they are very useful
in performing stationary phase approximations to path integral, see [8], [9] and [10].

In the theory of coherent states or generalized coherent ones the resolution of unity is
just a key concept, see [1]. Is it possible to understand this fact from the geometric point
of view 7 For a set of coherent or generalized coherent states we can define a projector
from the manifold consisting of parameters of them to infinite-dimensional Grassmann
manifold (called classifying spaces in K—Theory). Making use of this projector we can
calculate several geometric quantities such as Chern characters, see for example [13]. In
particular, we prove that each resolution of unity can be obtained by the curvature form
of some bundle on the parameter space.

Let us turn to Quantum Information Theory (QIT). The main subjects in QIT are
(i) Quantum Computation

(ii) Quantum Cryptgraphy

(ili) Quantum Teleportation

As for general introduction to QIT see [15], [16] and [17], [18].  The aim of this paper

is to apply geometric methods to QIT, or more directly

A Geometric Construction of Quantum Information Theory.



We are developing the theory of geometric quantum computation called Holonomic Quan-
tum Computation, see [24], [25], [26] and [19]-[23], and we are also studying geometric
construction of the Bell states or the generalized Bell ones, see [48], [49]. We are interested
in geometric method of Homodyne Tomography [31], [32] or geometric one of Quantum
Cryptgraphy [33], [34].

On the other hand, the method of path integral plays a very important role in Quantum
Mechanics or Quantum Field Theory. However it is not easy to calculate complicated path
integrals with classical computers. We are interested in it from the quantum information
theory’s point of view. That is, can we calculate or approximate some path integral in
polynomial times with Quantum Computers (Holonomic Quantum Computer especially) ?
Unfortunately we cannot answer this question, however we believe this problem becomes
crucial for Quantum Computers.

By the way it seems to the author that our calculations suggest some profound relation
to recent non—commutative differential geometry or non—commutative field theory, see for
example [35] or [36], [37]. This topic is very interesting, but beyond the scope of this

paper. We show the relation diagramatically

Classical Information Theory — Classical Geometry
[} 21 Century (X
Quantum Information Theory — Quantum Geometry

We expect that some readers would develop this subject.

In the latter half of this paper we treat special topics in Quantum Information Theory,
namely, swap of coherent states and cloning of coherent states. It is not difficult to
construct a universal swap operator (see Appendix), however for coherent states we can
construct a special and better one by making use of a generalized coherent operator based
on su(2). On the other hand, to construct a cloning operator is of course not easy by the

no cloning theorem [51]. However for coherent states we can make an approximate cloning



(“imperfect cloning” in our terminology) by making use of the same coherent operator
based on su(2). This and some method in [45] may develop a better approximate cloning
method. We also present some related problems on these topics.

We have so many problems to be solved in the near future. The author expects
strongly that young mathematical physicists and/or information theorists will take part
in this fruitful field.

The contents of this paper are as follows :
1 Introduction

2 Coherent States

3 Generalized Coherent States Based on su(1,1)

3.1 General Theory
3.2 Some Formulas
3.3 A Supplement

3.4 Barut-Girardello Coherent States
4 Generalized Coherent States Based on su(2)

4.1 General Theory
4.2 Some Formulas

4.3 A Supplement
5 Schwinger’s Boson Method
6 Universal Bundles and Chern Characters
7 Calculations of Curvature Forms

7.1 Coherent States

7.2 Generalized Coherent States Based on su(1,1)
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7.3 Generalized Coherent States Based on su(2)
8 Holonomic Quantum Computation

8.1 One—Qubit Case

8.2 Two—Qubit Case
9 Geometric Construction of Bell States

9.1 Review on General Theory
9.2 Review on Projective Spaces

9.3 Bell States Revisited
10 Topics in Quantum Information Theory

10.1 Some Useful Formulas

10.2 Swap of Coherent States

10.3 Imperfect Cloning of Coherent States
10.4 Swap of Squeezed-like States

10.5 A Comment
11 Path Integral on a Quantum Computer
12 Discussion and Dream

Appendix

A Formula on Associated Laguerre Polynomials
B Proof of Disentangling Formulas

C Universal Swap Operator

D Imperfect Cloning of Quantum States

E Calculation of Path Integral



F Representation from SU(2) to SO(3)

2 Coherent States

We make a review of some basic properties of displacement (coherent) operators within
our necessity. For the proofs see [4] or [1].
Let a(a') be the annihilation (creation) operator of the harmonic oscillator. If we set

N = a'a (: number operator), then
[N,a']=a', [N,a] = —a, [a',a] = -1 . (1)

Let H be a Fock space generated by a and a', and {|n)| n € N U {0}} be its basis. The

actions of a and a' on H are given by
aln) = v/nln — 1), a'ln) = vVn +1n+1) ,N|n) = n|n) (2)

where |0) is a normalized vacuum (a|0) = 0 and (0]0) = 1). From (2) state |n) for n > 1

are given by
(a')"

Vn!

These states satisfy the orthogonality and completeness conditions

0) - (3)

n) =

(1) = Gy i )l =1 (4)

Let us state coherent states. For the normalized state |z) € H for z € C the following

three conditions are equivalent :

(i) alz) =z|z) and (z]z) =1 (5)
(@) 12) =250 i) = e e o) ©)
(iii) |z) = e 77|0). (7)



In the process from (6) to (7) we use the famous elementary Baker-Campbell-Hausdorff
formula

A+B

e = e 24 BleAcP (8)

whenever [A, [A, B]] = [B,[A, B]] =0, see [1] or [4]. This is the key formula.
Definition The state |z) that satisfies one of (i) or (ii) or (iii) above is called the coherent
state.

The important feature of coherent states is the following resolution (partition) of unity.

L = S el =1 )

m
where we have put [d?z] = d(Rez)d(Imz) for simplicity. We note that
=

|z

(zhw) = ekl zlel 2w — ()| = e3P (w)]z) = (2Jw), (10)

so |(z|w)| < 11if z # w and |(z|w)| < 1 if z and w are separated enough. We will use this
fact in the following.

Since the operator

D(z)=e*'% for ze€C (11)
is unitary, we call this a displacement (coherent) operator. For these operators the fol-
lowing properties are crucial. For z, w € C

D()D(w) = " D(w)D(z), (12

D(z +w) = e 272 D(2)D(w). (13)
Here we list some basic properties of this operator.

(a) Matrix Elements The matrix elements of D(z) are

n! Z\m—n m—n
T kA I() (14

@) nzm GIDEm) = ot M e (15)

(i) n<m (n|D(z)|m)=e 2"



where L,(® is the associated Laguerre’s polynomial defined by

& S+ a2

L, (z) =Y (-1) (n ) : (16)
jz:% n—yj)j!

In particular L, = L, is the usual Laguerre’s polynomial and these are related to

diagonal elements of D(z). Here let us list the generating function and orthogonality

condition of associated Laguerre’s polynomials :

S L@ 1 17

A=t nZ::O n (@)t for ¢ <1, (17)
00 r 1

/ e 2L, (2) L, (z)dz = (oz+‘n+)5nm for Re(a) > —1. (18)
0 n!

As interesting applications of this formula see the recent [57] or [58]. See also Appendix

A.

(b) Trace Formula We have
TrD(z) = n6%(2) = 76(2)d(y) if 2 = & +iy. (19)

This is just a fundamental property.

(c) Glauber Formula Let A be any observable. Then we have

A= . MWZ]Tr[ADT(z)]D(z) (20)

This formula plays an important role in the field of homodyne tomography, [31] and [32].

(d) Projection on Coherent State The projection on coherent state |z) is given by

|z)(z|. But this projection has an interesting expression :
12) (2] =: e (@) (a=2) . (21)

where the notation : : means normal ordering.
This formula has been used in the field of quantum cryptgraphy, [33] and [34]. We note
that

12) (] #: e~ 0=) v
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for z, w € C with z # w.
A comment is in order. Several properties of displacement operator discussed in this

section can be generalized to the operator
D(z,t) =™ ~7tN  for 2 e€C, teR,

where N is the number operator, see [39)].

3 Generalized Coherent States Based on su(1,1)

In this section we introduce some basic properties of generalized coherent operators based

on su(1,1), see [8] or [4]. As for Lie groups or Lie algebras in the following refer to [6].

3.1 General Theory

We consider a spin K (> 0) representation of su(1,1) C sl(2,C) and set its generators
{KJMK*?KS} ((KJr)T = K*)?

(K3, K] =K., [K3,K|=-K_ [K, K_|=-2Ks. (22)

We note that this (unitary) representation is necessarily infinite dimensional. The Fock

space on which {K,, K_, K3} act is Hxg = {|K,n)|n € NU{0}} and whose actions are

Ki|K,n) = /(n+ 1)(2K +n)|K,n + 1),

K_|K,n) = \/n(2K +n — 1)|K,n — 1),

K3|K,n) = (K +n)|K,n), (23)

where | K, 0) is a normalized vacuum (K_|K,0) = 0 and (K, 0|K,0) = 1). We have written
|K,0) instead of |0) to emphasize the spin K representation, see [8]. We also denote by
1, the unit operator on Hy. (From (23), states |K,n) are given by

(K.

o) = nl(2K),

| K, 0), (24)
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where (a), is the Pochammer’s notation (a), = a(a + 1)---(a +n — 1). These states

satisfy the orthogonality and completeness conditions

(K,m|K,n) =6bmn, Y_|K,n)(K,n| =1g. (25)

n=0

Now let us consider a generalized version of coherent states :

Definition We call a state
lw) = e+ "K-|K 0) for w e C. (26)

the generalized coherent state based on su(1,1), [40].
We note that this is the extension of (7) not (5), see [4]. For this the following disentangling

formula is well-known :

WK=K _ (K Jog(1-[¢|*) K3, —CK - .
— o CK- o~ log(1-[¢|*) K3 o (K4 (27)
where
wtanh(|w
¢ =) = = (— g < (28)

This is the key formula for generalized coherent operators. Therefore from (23)

[w) = (1= [¢]) e[ K, 0) = |¢). (29)
This corresponds to the right hand side of (6). Moreover since
K, 0) =) K"K, 0) = ,/ C”\K n)
7;) nl” " v/ (2K nn' Z

we have
w) = (1—[¢) Z C”IK> [9F (30)

This corresponds to the left hand side of (6) Then the resolution of unity corresponding

to (9) is
2K —1  tanh(|Jwl|)[d*w] [ 2K — 1sinh(2|w])[d*w] o)l
/C m (1 - tanh2(|w|)) |w] o)l = / m 2|w| ]
oy E IO = S K (] = 1 (1)
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where C — D : w — ¢ = ((w) and D is the Poincare disk in C, see [38].
Here let us construct an example of spin K-representations.

If we set

a’, Ki= 1 (aTa + 1> (32)
3 3 = 9 2 )

then we have

(K3, Ky =Ky, [K3, K] =—-K_, [Ky, K| =-2K;. (33)

That is, the set {K,, K_, K3} gives a unitary representation of su(1,1) with spin K =

1/4 and 3/4. Now we also call an operator
S(w) = ez{wl@)?=wa®} g5 e C (34)

the squeezed operator.

3.2 Some Formulas

We make some preliminaries for the following section. For that we list some useful formulas
on generalized coherent states based ob su(1,1). Since the proofs are not so difficult, we
leave them to the readers.

Formulas For wy, w, we have

1-G0GP

o
(i) <w1|K+|w2>=<w1|wz>12_éZ2’ (36)
(i) <w1\f<\w2>=<wlrwz>12_Ké}2, (37)

N
(iv) <w1|K_K+|w2>:<w1|w2>”((1+_4§2§§<2- (38)
where

¢ = watanblusl) g gy (39)
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When w; = ws = w, then (w|w) = 1, so we have

_ 2K (¢ 2K(
) = 5 T e
B 9K + 4K?|C|?

<w|K_K+‘w> - (1 _ |<|2)2

Here let us make a comment. From (35)

(1 |aP)(1 - 6P }“
-GGl ’

(wrfus)f = {
so we want to know the property of

(- 16— 16
-Gl

It is easy to see that

L= 1P =16 _ G -6l >0
1= GGl -GGl ™
and (42) = 0 if and only if (iff) (; = (. Therefore
2K
nol6Pi el
-GGl B
because 2K > 1 (2K — 1 > 0 from (31)). Of course

oo = {

]<w1|w2>| =1 lﬁ Cl = CQ le w1 = Wy.

by (39).

3.3 A Supplement

(40)

(41)

(42)

(43)

(44)

Before ending this section let us make a brief comment on generalized coherent states

(26). The coherent states |z) has been defined by (5) : alz) = z|z). Why do we define the

generalized coherent states |w) as K_|w) = w|w) because K_ is an annihilation operator

corresponding to a 7 First let us try to calculate K_|w) making use of (29).

K_|w) = (1= [¢[*)" K¢ |K,0) = (1 — [¢[)e"re 5 K_et¥+| K, 0).
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Here it is easy to see

KKK = 30 Ry [CK e O K ]

n=0 """

=K+ 20K; + °K,
from the relations (22), so that

K_|w) = (1= [¢[*) e (K_ + 2¢K; + (°K,)| K, 0)
= 20K (1 — [¢)Fe S| K, 0) + K, (1 — |¢) et | K, 0)

= (2K + (K4 )w) (45)

because K_|K,0) = 0. Namely we have the equation

wtanh(|w|)

(K_ —C*K,)|w) = 2K(|w), where (= o (46)
or more symmetrically

(UK = GRlu) = 2KTu), where ¢ = (@
This equation is completely different from (5).
3.4 Barut—Girardello Coherent States
Now let us make a brief comment on Barut-Girardello coherent states, [41].
The states ||w)) (w € C) defined by

K_[[w)) = wljw)) (48)

are called the Barut—Girardello coherent states. This definition is a natural genelization
of (5) because K_ is an annihilation operator. In the preceding section we denoted by a
capital letter K a level of the representation of su(1,1). But to avoid some confusion in
this subsection we use a small letter k instead of K.

The solution is easy to find and given by

w)) = inf‘(’mmm (49)

13



up to the normalization factor. Compare this with (30). Let us determine the inner

product.
& () & (o)
(woflw')) = ;::O (2K, 2_30 n!(2k),
Noting that
['(2k +n) 1 T(2k)

(2k), =

T2k k),  Tk+n)
we have
((wl|w')) = T(2k)(Vow) ™ Iy, (2 0w,
where I,,(z) is the modified Bessel function of the first kind :

2\? & (2/2)*

Iz) = (2> nz:‘; nl(v+n+1)

Therefore

]| = ((wlu)) '/ = {Tk) o Ly 2fe])} . (50)

This gives the normalization factor of (49). Therefore the normalized solution of (48)
corresponding to (6) is given by

n

o w2 (2w —1/2 & wh n).
[[w)) = {T (k)| Lo (2w]) } ;} n!(2k)n|k’ ) (51)
Next we show the resolution of unity.
[ nt@oloniwl = [ F2oE o)l =1 62

where K, (z) is the modified Bessel function whose integral representation is given by

K =01 (y+1/2 ( ) / dye ™y — 1), ”>_;'

The proof of (52) is not so easy, so we give it.

/ dp(w, w)||w)) (w|| = z:o ZO/ dp(w, w) \/n' ;}: ljn'(Qk) |k, n)(k,m|  (53)

—Z/
=3 {/(mm }wmwm
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where we have integrated on 6 making use of w = re. Here

o0 4 oo
/ du(r)r?" = F(Qk)/o drr?F T Ko, 1 (2r)

0
4 1 2k+2n+14+2k—-1 _ 2k+2n+1-2k+1
- °r r
NEOE 2 )T 2 )
I'(2k +n)

— Wf(n +1) = (2k),n!,

where we have used the famous formula

/ dxx“’lK,,(ax) =1 (a) F(’u ; V)F(M V) a>0, Reu>|Rey|.
0

For the proof see [42]; Appendix B.  Therefore we have

)l (ol = 3 s 2Rt )l = 3 ] = L

Their states have several interesting structures, but we don’t consider them in this paper.

See [42], [43] and [44] as for further developments and applications.

A comment is in order.  Here let us compare two types of coherent states based on Lie
algebra su(1,1) - -- Perelomov type (section 3.1) and Barut-Girardello one (section 3.4).
The measures satisfying resolution of unity must be positive, so we have

(1) Perelomov type K >1 (< (31))

(2) Barut-Girardello type K >0 (< (52))

4 Generalized Coherent States Based on su(2)

In this section we introduce some basic properties of generalized coherent operators based

on su(2), see [8] or [4].
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4.1 General Theory

We consider a spin J (> 0) representation of su(2) C si(2,C) and set its generators
{J-‘rv J-, J3} ((J-i-)T = J—)a

[Ja, Js] = oy [JaJ-]=—J,  [J4, J-] =2J;. (54)

We note that this (unitary) representation is necessarily finite dimensional. The Fock

space on which {J;,J_, J3} act is H; = {|J,m)|0 < m < 2J} and whose actions are

Teldym) = /(m +1)(2J — m)|J,m + 1),

J_|Jym) = \/m(2J —m + 1)|J;m — 1),

J3|J,m) = (=J +m)|J,m), (55)

where |J,0) is a normalized vacuum (J_|J,0) = 0 and (J,0]J,0) = 1). We have written
|.J,0) instead of |0) to emphasize the spin J representation, see [8]. We also denote by 1,

the unit operator on H ;. ;jFrom (23), states |J,m) are given by

(J4)™
Jm) = 2t

where 9,P,,, = (2J)(2J —1)---(2J —m + 1). These states satisfy the orthogonality and

|J,0), (56)

completeness conditions

2J
<J7m|‘]an>:5mna Z |J7m><‘]7m| =1, (57)

m=0

Now let us consider a generalized version of coherent states :

Definition We call a state
lv) = e+7%7-1J,0) for v e C. (58)

the generalized coherent state based on su(2), [40].
We note that this is the extension of (7) not (5), see [4]. For this the following disentangling

formula is well-known :

7 2 7
vly—vJ- _ enJ+elog(1+\77| )Jge nJ—

e or

— o - g~ log(1+n|*) s g0y (59)
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where

vtan(|v
n=nf) = 22D (60)
[l
This is the key formula for generalized coherent operators. Therefore from (55)
1 77J+ —
0) = ———55¢"*1J,0) = |n). (61)

(1 +[nl")”

This corresponds to the right hand side of (6). Moreover since

e+ 7,0) = S gm0y = J,0) 0™ g, m
|, 0) mZ:0 Al Z \/7| Z_:O | J, m)

2J
= Z \/ 2JCmnm|J7 m> (62)
m=0
we have

lv) = Z \ 27Cmn™ | J,m) = (63)

(1+ !n\
This corresponds to the left hand side of (6). Then the resolution of unity corresponding

to (9) is
2J+1  tan(|v|)[d?v] Mol — 2J + 1sin(2|v|)[d?v] Mo
= Tt oy L= TR
241 [dn)
o = St =1 o

where C — C C CP' : v — 1 = n(v), see [38].

4.2 Some Formulas

We make some preliminaries for the following section. For that we list some useful formulas
on generalized coherent states based on su(2). Since the proofs are not so difficult, we
leave them to the readers.

Formulas For vy, vy we have

Q) <vlrv2>—{( (L o) |2)}, (65)

L [m ") (X + |

2Jm
L+ m

(i)  (ui|Jy|ve) = (vi|vg) (66)
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2Jn

g _ 67
(i) (vi[J-|v2) = (vi]va) Lt (67)
. 2J + 4J27717]2
i v|J_J|vg) = (v |vg) ————— 68
() (ol Tefus) = (o) 27 (63
where
L e T ) (69)
|01
When v; = v = v, then (v|v) = 1, so we have
2Jn 2Jn
vl Jilv) = ———, (w|J_|v)——, 70
2J + 4.J2|n|*
(0| J_ o) = ————7- (71)
(14 [n]*)?
Here let us make a comment. From (65)
2.7
2 11+ 7ime|”
[(v1|v2) " = 2 2 ’
(L [m ") (L + [n2]7)
so we want to know the property of
|1+ o
(14 Im[*) (1 + |72
It is easy to see that
I 2

(L fm )@+ ) (L )L+ [l®)

and (72) = 0 if and only if (iff) 7, = 72. Therefore

oo |? = 1+ il }2J
ok = (s ) <! =

because 2J > 1 (from (64)). Of course
l[(vi|vg)| =1 iff m=mn iff v =, (74)

by (69).
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4.3 A Supplement

Before ending this section let us make a brief comment on generalized coherent states

(58). The coherent states |z) has been defined by (5) : a|z) = z|z). Why do we define

the generalized coherent states |w) as J_|v) = v|v) because J_ is an annihilation operator

corresponding to a ? First let us try to calculate J_|v) making use of (61).

J_|v) = (1 + [n[>) 7 J_e+|J,0) = (1 + |n|*) e +e 1+ J_e™+ |, 0).

Here it is easy to see

_ =1
€ nJ+ernJ+ - Z %[_UJJH [_"7J+7 [ T [_n‘]+7 Jf] o ]]]

m=0 :

=J- - 277=]3 - 772J+ )
from the relations (54), so that

J_vy = (L+[¢) e (J- — 205 — 0 J4)|J,0)
=20 J(1+ |n[*) e | 1,0) — n? T (1 + [¢)?)~e7+] J, 0)

= (2Jn = n*J3)v)

because J_|J,0) = 0 and J3|J,0) = —J|J,0). Namely we have the equation

t
(J_+ ?72J+)’v> = 2Jnlv), where 7= Ua|n(||v|)7
v
or more symmetrically
t
(n~'J- +nJy)|v) = 2J[v), where 7= va|n(|\v])'
v

This equation is completely different from (5).

5 Schwinger’s Boson Method

(76)

(77)

Here let us construct the spin J and K-representations making use of Schwinger’s boson

method [7].
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We consider the system of two-harmonic oscillators. If we set
a=a®1l, a'=a"'®1; as=1®a, ay' =1®al, (78)
then it is easy to see
lai, 0] = [a;, a;"] = 0, a5, 0;7] = 655, 4,5 =1,2. (79)

We also denote by N; = a,;'a; number operators.
Now we can construct representation of Lie algebras su(2) and su(1, 1) by making use

of Schwinger’s boson method, see for example [8], [9]. Namely if we set

1
su(2): Jy=artay, J-=asay, Js = B (G1Ta1 - azfaz) ) (80)
1
su(l,1): Ky =ai'a’, K- =aya, Kz = 3 (alTCh + astay + 1) ; (81)

then we have

su(2): [Js, Jy] =y, [Js, ] = —J_, [Jo, J ] = 2J5, (82)

su(1,1) 1 [Ks, Ky = K., [K3, K] =—-K_, [K.,K_] = —2K. (83)

In the following we define (unitary) generalized coherent operators based on Lie alge-
bras su(2) and su(1,1).

Definition We set

su(2): Ujs(v) = e+~ for veC, (84)

su(1,1) 1 Ug(w) = "+ 5= for w e C. (85)

For the latter convenience let us list well-known disentangling formulas once more. We

have
su(2): Uy(v) = e+ or(1HnP) s =m0 ypere = vta|n(||v|)’ (86)
v
Ky Jlog(1-[¢|*) K3 ,—CK wtanh(|w|)
su(1,1) 1 Ug(w) = e +e® e , where (= ] (87)
w

For the proof see Appendix B. As for a generalization of these formulas see [40].
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Now let us make some mathematical preliminaries for the latter sections. We have easily

tsin(|t])
B
tsin(|t])
i

Us(t)a Uy (1) = cos(|t|)as as, (88)

Us(t)asUs(t) ™! = cos(|t])as + a, (89)

so the map (a1, a2) — (U;(t)arUs (1)1, Us (t)axUs (1) 1) is

cos(Jt) il )

B cos([t)

(U5 ()ar Uy (1)1, Us(t)asUs (8) ") = (a1, a2) (

We note that

( cos(|t[) ol

_% cos(|t])

) € SU(2).

On the other hand we have easily

U (DU (8)" = cosh([t])ay — Wa; (90)
Us (£)alUk (8) " = cosh([t])a}, — “”L'Z“t’)al, (91)

so the map (al,ag) — (Ug(t)a Uk ()71, UK(t)aEUK(t)_l) is

cosh(|t|) — {Sirﬁz('t‘) )

B tSinﬁb\(ltD cosh( ’t‘)

Uk (Dar Uk (8) ", Uk (1)a3U (£) ) = (a1, a}) (

We note that

(cosh(t) — Boink(e)
)

tsin‘Z(It\ cOSh<|t|)

) € SU(1,1).
Before ending this section let us ask a question.
What is a relation between (85) and (34) of generalized coherent operators based on
su(1.1) 7
The answer is given by :

Formula We have

™

D = Uklw), (92)

Us(=)51(w)Sa(=w)Us
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where Sj(w) = (34) with a; instead of a, see [32].
Namely, Uk (w) is given by “rotating” the product Sy (w)Sz(—w) by U;(—7).

Proof It is easy to see
Us(8)S1(w)Sa(—w)Us (1) = Uy (el =@} -s{@? @}y, )=t =X (93)
where

X = = {(Us(0)alU;(t) ™) = (U (H)abU,s(8))?}

{(Us®)arlUs(#)1)? = (Us(H)asUs (1))} (94)

1\3\81\9\8

¢ From (88) and (89) we have

X =

5 (oo = =) b (o - ) o - O o
—@ cos® — M a2 — | cos? . M o — (t +E>Sin(2|t|)a a

2 {( (|t|> ’t|2 > 1 ( (|ﬂ) |t|2 > 2 |t| 1 2}.

(95)
Here we set t = =F, then

X = %(Zaiag) — —(2a1a9) = wa];ag —wajay = e = Ur (w).

| &

Namely, we obtain the formula.

Next let us prove the following

Formula
TGV TONLAR T8 L 1AL S
Us(0)51(@)Sa(B)Us (1)) = Uyl FP- S-S}y o X (gq)
where

X = —(U;)alUs;6) ) = S (Us(0)arUs(8) 71>

I\D\Q M\Q
N\Qll\v\@\

(Us(0)adUs(8) 1) = S (Us()axUs (1) 7).
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;From (88) and (89) we have

x = 3 {eorta+ S5l b il - S {eoripa-+ 205
5 {eoeng+ Bl o2 - {eotia + 2 al
+ (01 = a2l - (5t - an v (o7
If we set
Bt —at =0 < Bt = at, (98)

then it is easy to check
cos®(|t])a +

so, in this case,

Therefore
Us(t)S1()S2(B)Us () ™! = S1(a)S2(0). (99)
That is, S1(a)Sa() commutes with U;(t) under the condition (98). We use this formula

in the following.

6 Universal Bundles and Chern Characters

In this section we introduce some basic properties of pull-backed ones of universal bundles
over the infinite-dimensional Grassmann manifolds and Chern characters, see [13].

Let 'H be a separable Hilbert space over C. For m € N, we set
Sti(H) = {V = (1, vm) € H x - x H | VIV € GL(m; C)} . (100)

This is called a (universal) Stiefel manifold. Note that the unitary group U(m) acts on
St (H) from the right :

Sty(H) x U(m) — St (H) @ (V,a) — Va . (101)
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Next we define a (universal) Grassmann manifold
Gra(H)={X € M(H) | X* = X, X" = X and trX =m} , (102)

where M (H) denotes a space of all bounded linear operators on H. Then we have a
projection

7 Sty(H) — Grp(H), «(V)=V{VTV) VT, (103)

compatible with the action (101) (7(Va) = Va{a 1 (VIV) la}(Va)l = n(V)).
Now the set
{U(m), Stm(H), 7, Grm(H)} (104)

is called a (universal) principal U(m) bundle, see [13] and [18].  We set
E,(H)={(X,v) € Gr,p(H) x H | Xv =0} . (105)
Then we have also a projection
n:E,(H) — Grp,(H), 7n((X,v)=X. (106)

The set
{C"™ E(H), 7, Gr,,(H)} (107)

is called a (universal) m-th vector bundle. This vector bundle is one associated with the
principal U(m) bundle (104).

Next let M be a finite or infinite dimensional differentiable manifold and the map
P:M— Gr,(H) (108)

be given (called a projector). Using this P we can make the bundles (104) and (107)
pullback over M :

{U(m), St, 75, M} = P*{U(m), St (H), 7, Gro(H)} (109)

» NSy

{C™ B 75, M} = P*{C™ E,,(H), 7, Gr(H)} | (110)
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U(m) U(m) cr cr

St — St,(H) E
M L Gr,.(H) M
see [13]. (110) is of course a vector bundle associated with (109).

For this bundle the (global) curvature (2-) form € is given by
Q = PdP ANdP (111)

making use of (108), where d is the usual differential form on €. For the bundles Chern
characters play an essential role in several geometric properties. In this case Chern char-

acters are given by

Q, 0 -, Q2 Q2P=QAQ, etc, (112)

where we have assumed that m = dimM is even. In this paper we don’t take the trace
of (112), so it may be better to call them densities for Chern characters.

To calculate these quantities in infinite—dimensional cases is not so easy. In the next
section let us calculate these ones in the special cases.

Let us now define our projectors for the latter aim. In the following, for H we treat

‘H = H in section 2, H = Hpg in section 3 and H = H; in section 4 at the same

time. For uy,usq, -+, u,, € C we consider a set of coherent or generalized coherent states
{’u1>7 ‘u2>7 Ty ‘um>} and set
Vm(u) = <|u1>7 ’u2>7 T |um>> = Vm (113)

where u = (uy, ug, -+, Up). Since V;,'V,, = ((ui|u;)) € M(m, C), we define

D,, = {u € C™ | det(V,,'V},)) # 0}. (114)
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We note that D,, is an open set in C™. For example, for m =1 and m = 2
Vitvi =1,

det(V51V5) = =1—|a*>0,

a 1
where a = (uj|ug). So from (10), (44) and (74) we have

D, = {u € C | no conditions} = C, (115)

D2 = {(U17U2) € CQ | Uy 7é UQ}. (116)
For D,, (m > 3) it is not easy for us to give a simple condition like (116).
Problem For the case m = 3 make the condition (114) clear like (116).

At any rate V,,, € St,,(H) for u € D,, . Now let us define our projector P as follows :
P:D,, — Grp(H), Pu)=V,(VIV,)"'Vi . (117)
In the following we set V' =V, for simplicity. Let us calculate (111). Since
dP =V VIV lavi{1 —v(VIV)"'VT 4+ {1 - VTV Vv (VIV) VT (118)
where d = 377" (duja%j + dﬂja%j), we have
PdP =V (VIV) lavi{1 — V(VTV)'V T}
after some calculation. Therefore we obtain
PdP AdP = V(VIV) Hav {1l — V(VIV)'VTIav](VIv))TvT (119)
Our main calculation is dVT{1 — V(VIV)~1V1}dV, which is rewritten as
dVH{1—-vViV)"'Vitdv = [{1 - ‘/(‘/'TV)_lvT}clV]T {1 - V(VTV)7'vTiav]  (120)

since Q =1 — V(VTV)"1V1 is also a projector (Q* = Q and Q' = Q). Therefore the first

step for us is to calculate the term
{1-vViv)y'viiav . (121)
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Let us summarize our process of calculations :

I-ststep {1 —V(VIV)'VTlaV ... (121),
2-nd step  dVH{1—-V(VIV)"'VT}aV ---(120),

3adstep  V(VIV)aVT{1 - VVIV)'VIIVI(VIV) VT L (119).

7 Calculations of Curvature Forms

In this section we only calculate the curvature forms (m = 1). The calculations even for
the case m = 2 are complicated enough, see [11] and [12]. For m > 3 calculations may

become miserable.

7.1 Coherent States
In this case (z|z) = 1, so our projector is very simple to be
P(z) = )] (122

In this case the calculation of curvature is relatively simple. ;jFrom (119) we have

PdP NdP = [2){d(z](1 — |2)(z])d|2) }{z| = [2)(z{d{z|(1 = [2)(z])d|2) }- (123)
Since |z) = exp(—3 z|*)exp(zal)|0) by (6),

d|z) = {(aT _ ';)dz _ ;dz} 12) = {awz - ;(Zdz 4 zdz)} 12) = {aTd,z - ;d(w)} 12),

so that

(1 =]2)(2l)dlz) = (1 = [2){z])al|z)dz = (a' — (z|a"]2))|2)dz = (a - 2)'dz]2)

because (1 — |2)(z|)|z) = 0. Similarly d(z|(1 — |2)(z|) = (z](a — 2)dZ.

Let us summarize :
(1= [2)(z)d]2) = (a — 2)Tdz]z), d(z|(1 = [2)(2]) = (2](a — 2)d= . (124)
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Now we are in a position to determine the curvature form (123).
d(z](1 — |2)(z])d|2) = (z|(a — 2)(a — 2)T|2)dZ Adz = dZ A dz

after some algebra. Therefore

Q = PdP ANdP = |z){z|dz Ndz . (125)
. From this result we know
Q dx N dy
i |2)(z]
i T

when z = x + dy. This just gives the resolution of unity in (9).

7.2 Generalized Coherent States Based on su(1,1)

In this case (w|w) = 1, so our projector is very simple to be
P(w) = [w){uw]. (126)
In this case the calculation of curvature is relatively simple. jFrom (119) we have
PdP N dP = [w){d(w|(1x — [w){w])dw)}(w] = |w)(w{d{w|(1x = |w)(w|)dlw)}, (127)
where d = dwZ + dw2. Since |w) = (1 — [¢*)Kexp(¢K )| K, 0) by (29),
dlw) = {dCK, + Kdlog(1 — |¢[*)} |w) (128)
by some calculation, so that

(1 — [w)(w])d|w) = 1k — [w){w]) Ky [w)d¢ = (Ky — (w] Ky [w))|w)dC

B _2K¢
- (0~ 2 et (129
because (1x — |w)(w|)|w) = 0. Similarly we have
2K -
e = ) = ol (10 = 2255 Y ac (130
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Now we are in a position to determine the curvature form (127).

d(w|(1x = |w)(w])dw)

B 2K( 2K¢ _
- (- - 25) (1 - 2 e
_ _2K¢ 2K ARE|CP } -
- {<w|K_K+|w> el ) = 2 ol )+ b acn dc
2K -
= ————d( Nd 131
after some algebra with (40) and (41). Therefore
Q = PAP A dP = Ju){w| 222 N G (132)
(1—1[¢)?
JFrom this result we know
Q2K dG ANdG _ 2K dG AN dG
s~ el = 25 LR
by (29) when ¢ = (; + /—1¢,. If we define a constant
2K —1
Cx = —57 (133)
then we have
Q 2K —1d d
Cra = ST (134)

fami (-2
This gives the resolution of unity in (31). But the situation is a bit different from [11] in

which the constant corresponding to C'x is just one.

Problem What is a (deep) meaning of Cx ?

7.3 Generalized Coherent States Based on su(2)

In this case (v|v) = 1, so our projector is very simple to be
P(v) = [v)(v]. (135)
In this case the calculation of curvature is relatively simple. ;From (119) we have
PdP N dP = |o){d(v|(1; = [v)(v])d|v)}{v] = |v){(v[{d{v|(1; = |v){v]d[v)}, (136
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where d = dv2 + dv2. Since [v) = (1 + In|*)~7exp(n.Jy)|.J,0) by (61),
dlv) = {dnJy — Jdlog(1+ n|*)} |v) (137)
by some calculation, so that

(Ls = [o){wld|v) = (1 = |v){v]) i Jv)dn = (J1 = (o] |0))|v)dn

277
=|(J. — ——= | dnlv 138
(7= 1270 ) il (139
because (1, — |v)(v|)|v) = 0. Similarly we have
2J _
el = o)D) = ol (- = 12225 ) (130)
1+ [n|

Now we are in a position to determine the curvature form (136).

Aol(L, ~ o) {el)dle)
— ol (- 20 (9= 22 o

L+ ||’ L+ [n|
2.Jij 2.Jn 42 .
S A A w7 fo) + —20 gy
{ 1+ [nf* 1+ [’ (1+ [n[*)?
2J
=—————dijANdnp (140)
(1+ [n]*)?
after some algebra with (70) and (71). Therefore
5 1d7
Q = PAP A dP = o) (o] 22000 (141)
(1+nl%)
JFrom this result we know
Q 2J dTh VAN d?]g 2J dTh VAN d?]g
b 2T AN ) 2T
2re (14 [nf%) T (14 nl")
by (61) when n =1, + v/ —11n9. If we define a constant
2J+1
= 142
CJ 2] ' ( )
then we have
Q 2J+1 dy Ndn
= ——=[n) (1. (143)

i (L Py
This gives the resolution of unity in (64). But the situation is a bit different from [11] in

which the constant corresponding to C'; is just one.
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Problem What is a (deep) meaning of C; 7

8 Holonomic Quantum Computation

In this section we introduce the concept of Holonomic Quantum Computation, see [23].
Our method is based on non-abelian Berry phase [14]. By the way we have Geometric
Quantum Computation based on abelian Berry phase. However we don’t make a comment
on this topic, see for example [27], [28] and their references.

Let M be a parameter space and we denote by A its element. Let A\g be a fixed
reference point of M. Let H), be a family of Hamiltonians parameterized by M which
act on a Fock space H. We set Hy = H,, for simplicity and assume that this has a m-fold
degenerate vacuum :

Ho’l}j = 0, j =1~m. (144)

These v;’s form a m-dimensional vector space. We may assume that (v;|v;) = é;;. Then

(v1,- -+, V) € St (H) and

Fy= {ijvjh:j € C} ~ C™.

Jj=1
Namely, Fj is a vector space associated with o.n.basis (vq, -, Up).

Next we assume for simplicity that a family of unitary operators parameterized by M
W:M—UH), W()=id (145)

is given and H) above is given by the following isospectral family
Hy =W\ HW (N (146)

In this case there is no level crossing of eigenvalues. Making use of W ()\) we can define a
projector

P: M — Grp(H), P\ =W\ (i vjvﬁ> WA (147)
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and have the pullback bundles over M from (109) and (110)

{Um),St,mg, M}, {Cm E x5 M} (148)

s Moo

For the latter we set
lvac) = (v, -+, vm) - (149)
In this case a canonical connection form A of {U(m), @5, TS /\/l} is given by
A = (wac|W (AN "HdW () |vac), (150)
where d is a usual differential form on M, and its curvature form by

F=dA+ANA, (151)

see [14] and [13].

Let v be a loop in M at Ag.,
v [0,1] — M, y(0) =~(1).
For this v a holonomy operator I' 4 is defined as the path—ordered integral of A along ~ :

T 4(7) = Pexp { f: A} e Ulm), (152)

where P means path-ordered. See [13].

This acts on the fiber Fy at A\g of the vector bundle {Cm,E,wE,M } as follows :

x — I'4(7)x.  The holonomy group Hol(A) is in general subgroup of U(m) . In the case
of Hol(A) = U(m), A is called irreducible, see [13].

In the Holonomic Quantum Computation we take

Encoding of Information = x € Fj,

Processing of Information = I'4(y) : x — ['4(7)x. (153)
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AX

Quantum Computational Bundle

8.1 One—Qubit Case

Let Hy be a Hamiltonian with nonlinear interaction produced by a Kerr medium., that is
Hy =hXN(N —1), (154)

where X is a certain constant, see [2] and [26]. The eigenvectors of Hy corresponding to
0 is {|0),]1)}, so its eigenspace is Vect {|0),|1)} = C2. The vector space Vect {|0),[1)} is

called 1-qubit (quantum bit) space and we set

Fy = Vect {|0),|1)} and |vac) = (|0}, [1)).
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Now we consider the following isospectral family of Hj :

Hia,p) = W(a, B)HoW (e, )71, (155)
W(a, 8) = D(a)S(5). (156)
In this case
M={(a,p) € C?} (157)
and we want calculate
A = (vac|WtdW |vac) (158)
where
0 _ 0 0 ~ 0
Since A is anti-hermitian (A" = —A), we can write
A= Ayda + AgdfB — A,'da — Ag'dp (160)
where
0w oW
A, = (vac|lW la—alvac) Ag = (vac|W 1%|UCLC>.
The calculation of A, and Ag is as follows ([19]) :
A = S L+ cosh(|))F + WE (161)
B(—1 + cosh(2|8])) ( 1 >
- K+=-L), (162)
’ 416 2

e o=, )=, )=t ) =)

Then making use of these ones we can show that the holonomy group generated by (158)
is irreducible in U(2), namely just U(2), see [25] and [19]. This is very crucial fact to

Holonomic Quantum Computation.
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8.2 Two—Qubit Case

We consider the system of two particles, so the Hamiltonian that we treat in the following
is
Hy = hXN;(N; — 1) + hXNy(Ny — 1). (163)

The eigenspace of 0 of this Hamiltonian becomes therefore
Fy = Veet {[0). 1)} @ Vect {]0}, [1)} = Vect {]0,0),[0,1),]1,0), [1,1)} = C*.  (164)

We set [vac) = (10,0),[0,1), |1,0), |1, 1)).

Next we consider the following isospectral family of Hy :

H(al»ﬁl’)\y#:a%ﬂ2) = W(a17 517 )\a H, &z, ﬁ?)HOW(ala Bla >\a o, O, 52)_1, (165)
W(Oéhﬁh A, s 042752) = Wl(alyﬁl)om(/\a :U)WQ(OQ:ﬁ?)' (166)

where
O2(\, ) = Us(MUgk (1),  Wilay, 85) = Dj(ey)S;(8;) for j=1,2. (167)

1 2
m(_ @8

In this case
M = {(alvﬁh)‘aﬂﬂaQaﬁQ) € CG} (168)

and we have only to calculate the following

A = (vac|W1dW |vac), (169)
where
0 0 0 0 0 0 0 0
d= da18a1+da18 +dﬁlaﬁ1+dﬁlaﬂ1+d)\§+d/\8 +du8—+dua
0 0 0 0
+ d(l/ga + daga + dﬁg o + d&E : (170)
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The calculation of (169) is not easy, but we can determine it, see [19], [20] and [22] for
the details. But we cannot determine its curvature form which is necessary to look for
the holonomy group (Ambrose-Singer theorem) owing to too complication.
Then the essential point is
Problem Is the connection form (169) irreducible in U(4) 7
Our analysis in [22] shows that the holonomy group generated by A may be SU(4) not
U(4). To obtain U(4) a sophisticated trick - - - higher dimensional holonomies [52] - - - may
be necessary.

A comment is in order. After submitting this paper to quant—ph the author found
the papers by Lucarelli [29], [30]. In them he solved the problem above by using the

another method.

9 Geometric Construction of Bell States

In this section we introduce the geometric constraction of Bell states by making use of
coherent states based on su(2), [48]. One of purpose of Quantum Information Theory is
to clarify a role of entanglement of states, so that we would like to look for geometric
meaning of entanglement.

The famous Bell states ([53], [54]) given by

j§<\o> ®0) +]1) @ [1)), ()
1

Z5(10)©10)~ 1) 1) (172)
j§<\o> 1)+ 1) ® o)), (173)
Loy -meo) (174)

QI

2
are typical examples of entanglement. It is very interesting that these play an essential
role in Quantum Teleportation, see [15]. We would like to reconstruct these states in a

geometric manner.
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9.1 Review on General Theory

Let us make a review of [50] and rewrite the result with our method. Let G be a compact
linear Lie group (for example G = U(n)) and consider a coherent state representation of G
whose parameter space is a compact complex manifold S = G/H, where H is a subgroup of
G. For example G = U(n) and H = U(k) x U(n— k), then S = U(n)/U(k) xU(n—k) =
G(C™), which is called a complex Grassmann manifold, [4], [10]. Let Z be a local
coordinate on S and |Z) a generalized coherent state in some representation space V
(=2 CX for some high K € N). Then we have, by definition, the measure du(Z, ZT) that

satisfies the resolution of unity
/ du(Z, 2020 Z] = 1y and / du(Z, 2" = dimV . (175)
s s

Next we define an anti-automorphism b : S — S. We call Z — Z” an anti-

automorphism if and only if

(i) Z — Z” induces an automorphism of S, (176)

(i) b is an anti-map, namely (Z°|W") = (W|Z). (177)

Now let us redefine the generalized Bell state in [50] as follows :

Definition The generalized Bell state is defined as

1)) = <= [Lau(2.212) 912, (178)

Then we have

(BIIB)) = dlmv [ [ du(z.20anw.whiz| o () (W) @ W)

= o [ [ dulz, Z0au(v, ) zIw) (20

[ [ du(z. 20an(w.whiziw) (w|2)

:dimV
du(Z, 22| Z
dlmv/ (2, 2)(2|2)
du(Z,2%) =1,
dlmV/ ,u )

where we have used (175) and (177).
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9.2 Review on Projective Space

We make a review of complex projective spaces, [13], [9] and [22]. For N € N the complex
projective space CPY is defined as follows : For ¢, p € CN*1 — {0} ¢ is equivalent to p
(¢ ~ p) if and only if ¢ = A p for A € C — {0}. We show the equivalent relation class as
(€] and set CPY = CN*! — {0}/ ~. When ¢ = (o, (1, -+, () we write usually as [¢] =

[Co:¢ii-++ 1 Cy]. Then it is well-known that CPY has N + 1 local charts, namely
N
CPN=U, Ui={[G::¢: ¢ ]G #0} (179)
=0
Since

(CO?)C]??gN):C]<<]77CJa 3 ij ’Cj

we have the local coordinate on U

<Cj’ GG 7Cj>' (180)

However the above definition of CPY is not tractable, so we use the well-known

S Cj*llcﬂ'“... CN)

expression by projections
CPY =G (C"")={PeM(N+1,C)| P2=P, P' =P and trP =1} (181)

and the correspondence

GF GG - ol
GG Gl - - Gly

1
NCRETEE =P.
T Y N ro
(G G- [
(182)
If we set
Co
G
|C>=; : (183)
VI 1¢G1?
(w
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then we can write the right hand side of (182) as

P =0 and {([¢) = 1. (184)

For example on U,

ran) = (28 2)
) b ) CQ?QO’ 7C0 b
we have
1 21 .. ZN
2 _
Z1 |Zl| * + Z1ZN
1
Pz, ,2y) = ———3
1"‘2;‘\[:1‘23"2
_ 2
v aNE e
- ‘(Zlﬂz%'"7ZN)><(217227“'7ZN>| 9 (185)
where
1
21
1
(21,22, +, 2N)) = - - (186)

\ 1+ E;'Vzl |Zj’2

ZN

Let us give a more detail description for the cases N = 1 and 2.

(a) N=1:

1 1
where |2) = ——— ( ) , Z= é, on Uy , (187)

where |w) = ————— , w==>, onU,. (188)



1z 5%
1
P(z1,22) = 1+ [l £ [l 2 a2z | =1z, 22)) (215 22)];
2 27 |zl
1
1
where  |[(z1,20)) = . - L, (21, 2) = (Cl,<2> on Uy , (189)
VI L2+ |2 S %o
Z2

1
P(wy,wy) = ’w1‘2+1+‘w2’2 w1y 1wy = [(w1, w2)) (w1, ws)],

1 1 (co G

<1,<1> on U3 (,190)

e e P

Wa

|'U1|2 U1’(72 U1
1

P(vy,v9) = o+ [ + 1 valy  |va]? vy | = (V1 v2)){(v1, v2)],
1 2
U1 () 1
U1
1
where |(vy,v9)) = - - ;o (v,v9) = (CO, Cl) on Uz . (191)
Vien® + foaf* 41 GG

9.3 Bell States Revisited

In this subsection we show that (178) coinsides with the Bell states (171)—(174) by choos-
ing anti-automorphism b suitably.

We treat first of all the case of spin % From here we identify

=) ma m=())
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so we have

W =0 @ n=-n @) 7=

Now by making use of these we define

Definition

1) IB) = 5 [ duto.ln) © 1),
@) 11B)) f/dﬂnn|n ®|-1),
) IB) = 5 [ duln.ln) 11/,
@) 1B = — [ dutn.la) =1/,

where we have put for simplicity

2 [dn]
du(n, ) = =141
It is easy to see from (187) and (188)
b - 1 _
() |7y =) = =(10) +7[1)),
L+ 7]

Then making use of elementary facts

1 1 1
= — (o) +n1) = —— | " ].
T e T (n)

In this case we consider the following four anti-automorphisms (176) and (177) :

2 [d%n)] 12 (@] In|
0 /C (L+ ") 1+ |77|2 m / c(1 + |77|2)2 L+ [nf°

2/ [d?n)] 7/ n
c (1+[nf 21+!77| 1+!77\ 21+\?7!

41

?

(192)

(193)

(194)
(195)
(196)

(197)

(198)

(199)

(200)

(201)



we obtain easily

1) 1IB) = 7(|0>®|O>+!1>®\1>) (202)
(2) 1B = 7(|0>®|0> @), (203)
3) 1IB) = 7(|0>®|1>+!1>®|O>) (204)
(4) ||B>>Zﬁ(|0>®|1>—|1>®|0>)- (205)

We just recovered the Bell states (171)— (174) !! ~ We can say that four ||B)) in Defini-
tion are overcomplete expression (making use of generalized coherent states) of the Bell
states. This is an important point of view.

Since we consider the case of higher spin J, we write |n) as

), = m |n| >J Zmn k) (206)

to emphasize the dependence of spin J. Here we have set |k) = |J, k) for simplicity. ;From
the above result it is very natural to define Bell states with spin J as follows because

the parameter space is the same CP! :

Definition
(1) 11B)) = m L dut.mln), 1) . (207)
@) 1B = = [ duta 1)), © 1. (208)
(3) 11B)) = m/ )y @ [1/7),1, (209)
@) 1B = = [ dutn.)ln), =1/, (210)
where
dp(n,n) = 2J7:r ! a EQIZ]W

Let us calculate |) ,, [=7),, [1/7), and |=1/n) ;. It is easy to see

L) ;=7 Z V2sCr 7 IR), (211)
(1+ !nl )k
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2) [-m,=———7 Z V27Ck (—
(1+ |n| ?)" i

(3) [1/m), = sz 7120 — k),
(1 +|n|)
(4) ‘_1/ﬁ>J JZ\/QJCk k‘2J—k’>.

(+|n|)

.From this lemma and the elementary facts

1 2
27 + / [dn]22 n — = for 0<k<2J,
m Jo @+ )2+ )2 2sCk

we can give explicit forms to the Bell states with spin J :

(1) |1B)) = ff > k) @ 4,

(2) 1IB) = mz )*Ik) ® [k),

@) 11B) - ﬁzw ©[2] - k)

(4) [|1B)) = mz k) @ 20 — k).

(212)

(213)

(214)

(215)

(216)

(217)

(218)

We obtained the Bell states with spin J which are a natural extension of usual ones

(J =1/2).

A comment is in order. For the case J =1 :

(|0> ®[0) + 1) @ 1) +[2) ©[2)),

—~
—_
~—

(!0>®\0> D e[ +12) @2),

—~
[\
~—~—

(|0> ®[2) + 1) @ 1) +[2) ©10)),

Sl

(0@ [2) ~ 1) @ [1) + [2) ® [0)).

—

W

N—
Sl

It is easy to see that they are not linearly independent, so that only this case is very

special (peculiar).

Comment We cannot give a geometric construction of Bell states by making use of

generalized coherent states based on su(1,1) (Lie algebra of non—compact Lie group).
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Because the parameter space in this case is a Poincare disk D = {¢ € C | |(| < 1} and
the measure on it is given by
2K — 1 [d¥(]

T (L=

dp(¢, ¢) =
see (31). Therefore we have
1 1
/Ddu((,g“) - (2}(—1)/0 Iy =0

Compare this with (175). This is a reason why we cannot determine a normalization.

10 Topics in Quantum Information Theory
In this section we don’t introduce a general theory of quantum information theory (see
for example [15]), but focus our attention to special topics of it, that is,

e swap of coherent states

e cloning of coherent states

Because this is just a good one as examples of applications of coherent and generalized
coherent states and our method developed in the following may open a new possibility.

First let us define a swap operator :
S:HOH —H®H, Sla®b)=bxa foranya,beH (219)

where H is the Fock space in Section 2.
It is not difficult to construct this operator in a universal manner, see Appendix C. But
for coherent states we can construct a better one by making use of generalized coherent

operators in the preceding section.
Next let us introduce no cloning theorem, [51]. For that we define a cloning (copying)
operator C which is unitary

C:HOH—HRXH, Chx|0))=hxh forany heH . (220)
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It is very known that there is no cloning theorem
“No Cloning Theorem” We have no C' above.
The proof is very easy (almost trivial). Because 2h = h+ h € H and C is a linear

operator, so

C(2h ® |0)) = 2C(h @ |0)). (221)

The LHS of (221) is
C(2h®10)) =2h ® 2h = 4(h ® h),
while the RHS of (221)

2C(h ® |0)) = 2(h ® h).

This is a contradiction. This is called no cloning theorem.
Let us return to the case of coherent states. For coherent states |a) and |) the superpo-
sition |ar) + |B) is no longer a coherent state, so that coherent states may not suffer from

the theorem above.
Problem Is it possible to clone coherent states ?

At this stage it is not easy, so we will make do with approximating it (imperfect cloning
in our terminology) instead of making a perfect cloning.

We write notations once more.

Coherent States |a) = D(a)|0) for a€C

Squeezed-like States |5) = S(6)|0) for [feC

10.1 Some Useful Formulas

We list and prove some useful formulas in the following. Now we prepare some parameters

«, €, k in which €,k are free ones, while o is unknown one in the cloning case. Let us
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unify the notations as follows.

a: (unknown) o = |ale’X, (222)
¢ : known € = |ele’, (223)
K : known k= |kle®, (224)
Let us start.
(i) First let us calculate
S(e)D(a)S(e)™". (225)
For that we show
S(€)aS(e)™! = cosh(|e])a — esinh(|e|)a'. (226)
Proof is as follows. For X = (1/2){e(a")? — €a®} we have easily [X,a] = —ea’ and
[X,al] = —éa, so
1 1
S(G)CLS(€>71 = eXae*X =a+ [X7 CL] + §[X7 [Xv CLH + §[X7 [X7 [X7 CLH] +o
—a—eaT—FEa—ﬂaT—F“
B 2! 3!
1+|E|2+ ‘ |\+|€|3+ f
= - cee s — — € - cee s
2! €] 3!
i 4
= cosh(le|)a — eszn’l(\e])aT = cosh(|e|)a — e sinh(|e|)a’.
€
JFrom this it is easy to check
S(e)D()S(e)™ = D (aS(e)a’S(e) ™ — as(e)aS(e) ")
= D (cosh(le|)a + esinh(]e])a) (227)
Therefore
D(elly it ¢=2
S(OD@)s(e) " =1 P 0= (228)
D(e a) if ¢g=2x+m
By making use of this formula we can change a scale of a.
(i) Next le us calculate
S(e)S(a)S(e)~". (229)
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JFrom the definition

where
Y =« (S(e)aTS(e)_1)2 —a (S(e)aS(e)_1> :

¢From (226) and after some calculations we have

Y = {cosh2(|e|)a - e2i¢sinh2(|e|)d} (a")? — {cosh2(|e|)d - e_2i¢sinh2(|e|)a} a?
(—e a + ea)
2
{cosh2 le])a — e*®sinh?(|e|)a } (ah)? — {coshQ(leDd — e_2i¢sinh2(|e|)a} a?

(—e

sinh(2|e|)(a'a + aa’)

1
+ (—e o+ ea)sinh(lel)(ala+ 5) (<= [a,al] = 1)

or

1 . .
;Y = {cosh?(|e|)a — e®¢sinh?(Je)a} K, — {cosh?(|e|)a — e 2¢sinh*(|e|)a} K_

+ (e ®a + e?a)sinh(2|e|) Ks (230)

with {K, K_, K3} in (32). This is our formula.
Now

e o+ e?a = |a|(—e ¢ 4 0 N)) = 24|alsin(é — ),

so if we choose ¢ = , then e?®a = e?Xe~X|a| = a and
cosh®(|e|)a — e*®sinh?(|e])a = (cosh2(|e|) - smh2(|e|)> a=«

, and finally

That is,
S(e)S(a)S(e)™! = S(a) = S(e)S(a) = S(a)S(e).

The operators S(e) and S(«) commute if the phases of € and « coincide.
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(iii) Third formula is :  For V(t) = ¥ where N = a'a (a number operator)
V(t)D(a)V(t)™t = D(e"a). (231)
The proof is as follows.
V(#)D(@)V () = exp (aV(B)a'V ()" = aV(H)aV () ™).
It is easy to see
V(t)aV(t) ™t = e™Nae ™ = q + [itN, a] + ;![itN, [itN,a]] + - -

(—it)?
21

=a+ (—it)a+ a+---

= e ‘.

Therefore we obtain
V(#)D(a)V ()™ = exp (04e“aT — @e_itaT) = D(e"q).
This formula is often used as follows.
o) — V(t)|a) = V() D(a)V (t)"'V(1)[0) = D(e"a)|0) = |e"a), (232)

where we have used

V(#)[0) = 10)

becase N|0) = 0. That is, we can add a phase to o by making use of this formula.

10.2 Swap of Coherent States

The purpose of this section is to construct a swap operator satifying
a1) ® |ag) — |az) @ |aa). (233)

Let us remember U, (k) once more

t oo raral
Uj(k) = e"™®27r1%  for ke C.
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We note an important property of this operator :
Us(#)|0) ®10) = 10) @ 0). (234)
The construction is as follows.
Us(r)la1) @ |az) = Us(k)D(ar) @ D(az)|0) ® [0) = Us(k)D1(a1) Da(2)[0) @ |0)

= Uy (k) D1(01) Da(02)Us (1)U (k)|0) @ |0)
= U;(K)D1(a1) Da(02)U; (1) 10) @ 10) by (234), (235)
and
Uy (k) Di(01) Da(az) Uy (k)" = Uy(r)exp {aral — aras + azal — azan} Uy (k)™
= exp {1 (Us(k)arUys (k) ™)' = Uy (9) Uy (1) ™!
+az(Us(r)axl; (1)) = Gl (k)asUy (r) 7'}

= exp(X). (236)

;From (88) and (89) we have

X = {cos(|ﬁ|)a1 + Ksm(‘ﬁ‘)a }aJ{ — {COS(l/ﬁJDOzl + Rsin(!m!)ag} a

7 w2
K]

+ {cos(|/{|)a2 — /fsm(|/<;|)a1} al — {COS(‘RDO&Q — mmwal} as,
K] %]
SO
ksin(|k|) rsin(|k])
exp(X) = Dy | cos(|k])a + T&g Dy { cos(|k|)ag — Tal
rsin(|k|) rsin(|k|)
= D | cos(|k|)ay + Tag ® D | cos(|k|)aa — Tal :
Therefore we have from (236)
ksin(|k|) rsin(|k|)
) ® |ag) — [eos(|k])an + TO@) ® |cos(|r[)az — T%)-

If we write & as |k|e?, then the above formula reduces to
Ssin(|r|)an).  (237)

1) ® |a) — Jeos(|k])as + e sin(|r])az) @ |cos(|k|)az — e
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Here if we choose for example k = |k| = 7/2, then
o) ® |ag) — |an) @ |—a1) = |ag) ® e ay).

Now by operating the operator V =1 ® ¢™ where N = a'a from the left (see (232)) we
obtain the swap

1) ® |ag) — |az) ® |ay).

A comment is in order. In the formula above we set a; = a and as = 0, then the

formula reduces to
U;(r)D1()Us (k)™ = Dy(cos(|k|)a)Dy(e "t sin(|x])a). (238)

This will be used in the next subsection.

10.3 Imperfect Cloning of Coherent States

We cannot clone coherent states in a perfect manner like
la) ®10) — |a) ® |a) for a € C. (239)

Then our question is : is it possible to approximate ? We show that we can at least make
an “imperfect cloning” in our terminology against the statement of [45].
Let us start. The method is almost same with one in the preceding subsection, but we

repeat it once more. Operating the operator U;(k) on |a) ® |0)

Us()la) @ [0) =Di(cos([i])a) Da(e™"*sin(|])a)[0) @ [0) by (238)
={D(cos(|s])a) @ D(e” " sin(|])a) } [0) © |0).

i(6+m)N

Operating the operator 1 ® e on the last equation

D(cos(|x)ar) @ "N D (e sin(|x[)cr)|0) @ [0)
=D(cos(|r])a) ® TN D (e M sin(|k|)a)e TN |0) @ |0)
=D(cos(|r|)a) ® D(sin(|x[)a)[0) @ |0) by (231)
=|cos(|K])a) @ |sin(|r])a).
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Namely we have constructed
o) @ 10) — [eos(|s])a) @ [sin(|x])ar). (240)

This is an “imperfect cloning” what we have called. When cos(|s|) = sin(|x|) = 1/V/2,

we have

) ® [0) — |j‘§> ® rjﬁ»

For the “imperfect cloning” of general quantum states see Appendix D.

A comment is in order. The authors in [45] state that the “perfect cloning” (in
their terminology) for coherent states is possible. But it is not correct as shown below.
Their method is very interesting, so let us introduce it.

Before starting let us prepare a notation for simplicity (227) :
S(e)D(a)S(e)' = D(a), & = cosh(|e|)a + e®sinh(|e|)a.
Operating the operator S(e) ® S(e~?) from the left

S(e) ® S(e™)a) ® [0) = {S(e) ® S(e7*) } {D(e) @ 1} |0) @ |0}
= S(e)D(a) ® S(e7*?)[0) ® |0)
= S(e)D(a)S(e)7'S(e) @ S(e™*?)[0) ® |0)
= D(@)S(e) ® S(e™*?)[0)  |0)
= {D(a) ® 1} {S(e) @ S(e™**) } 0) @ [0)
= Di(a) {S(e) ® S(e )} |0) @ |0).

Operating the operator U;(k) (remember that k = |x[e®) from the left

Uy (k) D1(&) {S(e) ® S(e7*?)} |0) @ |0)
=U,(x)D1(@) {S(e) *M} 5(8)™'U(%)|0) @ [0)
=U; (k) D1(@) {S(€) @ S(e™*) Uy (s)0) @10) by (234)

=U, (k) D1(@)U, (1)~ U (k) { S(e) ® S(e ™€) } U, (1)~ |0) @ [0)

=D\ (cos(|])&) Da(—e~sin(||)@) {S(e) @ S(e ™€)} [0) ® [0) by (99) and (238)
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={D(cos(|r|)a@) @ D(—e “sin(|u])a) } {S(e) ® S(e ™€)} 0) @ |0)
=D(cos(|k|)@)S(€) @ D(—e “sin(|x|)@)S(e *€)|0) @ |0).
=D(cos(|k[)@)S(€) ® D(—isin(|x[)a)S(=€)|0) @ |0),
where we have chosen in the last step
e =i («= for example §= —g)

Operating the operator S(—€) © S(e) from the left
{S(—€) @ S(e)} D(cos(|k])a)S(e) ® D(—isin(|x[)a)S(—€)]0) @ |0),
=S(—€)D(cos(|r])a)S(e) ® S(e) D(—isin(|r])a)S(e)~'/0) @ |0).
Here let us calculate the last term :
S(—e)D(cos(|r|)&)S(€) = D(cos(|x])ev)

and we obtain

S(e)D(—isin(|x|)@)S(e) ' = D(—isin(|x|)a)
against the equation (38) in [45]
S(€)D(—isin(|r|)a)S(e) "t = D(—isin(|x|)a)

where

& = cosh(2|e))a + e?sinh(2]e|)a.

Therefore one cannot follow their method from this stage.

(241)

(242)

(243)

(244)

But as stated above their method is simple and very interesting, so it may be possible to

modify that more subtly by making use of (228).

Problem Is it possible to make a “perfect cloning” in the sense of [45] ?
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10.4 Swap of Squeezed—like States
We would like to construct an operator like
|61) ® [B2) — [62) @ |B1). (245)

In this case we also use the operator Uy (k).

Similar to (235)

Us(K)|81) @ |B2) = Us(k)S(B1) @ S(32)]0) @ |0)
= U;(£)51(51)S2(52)]0) @ [0)
= U;(k)S1(51)S2(82) U, (1) ~10) @ 10). (246)

On the other hand by (96)

Us(k)S1(81)Sa(B2)Us (k)" = e,

where

1{ K2sin?(|k|) i L oo REsinA(lE]) 5 |
X = 5608 ([kD)B1 + ———5 B2 (a1)” — 5 qeos™(|k])B1 + —— B2 ¢ af

I 2 I

_9 . 9 2 5002
+ ; {0032(|m|)52 4 ’”2”2('“')&1} (a})’ — & {cosQ(|m|)B2 + W&} a3

|| 2 ||

+ (Bak — 51/%)%@{@; — (Bok — BW)MGMQ

2[x|
Here an extra term containing aJ{ag appeared. To remove this we must set Gox — Gk = 0,

but in this case we meet

Uy (k)S1(681)S2(B2)Us (k)" = S1(51)52(52)

by (99). That is, there is no change.

Therefore from the beginning we set for example k = |k| = 7/2, then
X = 2 {Ba(al)? = Boa?} + 5 {Br(ab)? — Bra)
— 5 172\M 201 5 |P11%2 14y,

so we just have

Uj(m/2)51(61)S2(B2)Us(m/2) ™" = S1(52)S2(61) (247)
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or equivarently (245)
|61) @ [B2) — [52) @ |B1).

A comment is in order. The operator U; (k) plays a central role in the swap of quantum

states. For the swap of general quantum states see the Appendix C.

10.5 A Comment

We have used in the process of proofs both a displacement operator D(«) and a squeezed

one S(e)

D(a) = exp(aa’ —aa), S(e) = exp; (e(aT)2 - Ea2)

as a product operator
S(e)D(a). (248)

We note that this product operator with the parameter space {(a, €) € C?} plays a crucial
role in our Holonomic Quantum Computation (Computer), see section 8.1.

Similarly, the product operator

Uk (w)U;(v) (249)

with the parameter space {(v, w) € C?} also plays a crucial role in it, see section 8.2.
We believe that Holonomic Quantum Computation and our geometric method ( involving

swap or imperfect cloning) in Quantum Information Theory are well-matched.

11 Path Integral on A Quantum Computer

In this section we present a very important problem (at least to the author) about the

possibility of calculation of path integral on a Quantum Computer.
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The path integral method plays an essential role in Quantum Mechanics or Quantum
Field Theory. But it is, in general, not easy to calculate it except for Gaussian cases.
Some specialists must, in a perturbation theory, calculate many Feynman’s graphs by
making use of a classical computer(s). This is a hard and painful task.

Now let us present our general problem.

Problem Is it possible to calculate a path integral in polynomial times by making use

of a quantum computer ?

For this subject refer [46] and its references. But our method or interest is a bit
different from [46]. To match our method with path integrals we should use coherent
state path integral method, see [8], [9], [10]. [55] is also recommended.

To calculate a physical quantity such as a trace formula of the Hamiltonian we, for ex-
ample, give a coherent state path integral expression to it. We want to calculate it, but
it is usally not easy to do so. Therefore we have to make do with some approximations

(WKB approximation, etc). Then our next problem is

Problem Is it possible to give it in polynomial times with Holonomic Quantum

Computer ?

For the readers who are not familiar with coherent state path integral method let us show
a simple, but very instructive example, [47].

Let us consider the Hamiltonian of harmonic oscillator
H =wN =wd'a, (250)

where we have omitted the constant term for simplicity. The eigenvalues of H are well-

known to be {nw | n=0,1,---} and its trace formula is given as

) e . 1
tre T =3 e T = . (Abel sum). (251)
n=0

efin

Let us give a coherent state path integral expression to this trace formula. Making use of

the resolution of unity (9) we obtain

2 2
tr o—TH — {1 10-TH — 1 [d” 2] |z><z|e—iTH _ / [d”2]

—iTH) - 252
= [ (el ™) (252)
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This is just an analytical expression of the trace formula. It is easy to calculate this

directly, but we give this a path integral expression. Noting

X N
X _ 1 A
g (1)
we have
_ [d?2] : N
RHS of (252) = lim (z| (1 —iAtH)" |2), (253)

N—ooJCc T
where we have set At =T/N.

By inserting the resolution of unity (9) at each step likely

(1 —iAH)Y = (1 —iAtH)1 (1 —iAtH)1--- (1 —iAtH) 1 (1 — iAtH)

d?z;
1:/[ Zj]|zj><zj| forany 1<j<N-1,
c 7

we have
2 ] N
I (211 — iAtH |z_1), (254)

RHS of (252) = i /
© lm PBC H

N—>oo T

where PBC (periodic boundary condition) means zy = zo = z. We note that the choice
of {z1,29,+-+,2zy_1} is random.

Let us calculate the term (z;|1 — iAtH|z;_) :

(7|1 = iAtH|zj1) = (35]zj-1) — iA8(z|H|2;)
AH .
= (s {1 - ane 2|

(zjlzj-1)
(zj|H|2zj-1)

= (zj]zj_1)exp {—iAt
e (z]zj-1)

} up to O((At)?).

On the other hand from (10) and (5)

1 1 _
(zjlzj—1) = exp (—Q\Zﬂz - §|ZJ>1!2 + Zij1> 7
(zj|H|zj-1)

(zj|H|zj-1) = w(zjla’alzj_1) = w2z 1(z|2-1),
(zjlzj-1)

= ngijl,
so we have

, 1 1 ) o
(2|1 —iAtH|zj_1) = exp {—2|zj|2 - §|Zj_1|2 + Z;zj-1 — zwAtzjzj_l}
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after some algebra. Here taking the periodic bountary condition zy = zj it is easy to see

N

I (211 — iAtH|zj_1) = exp { Z {zi(zj — zj—1) + iwAtEjzj_l}} :

j=1
Therefore from this we reach
A2

N
RHS of (252) = lim H

N—oo

exp { i —2zj—1) + iwAtzjzj_l}} . (255)

This is just the coherent state path integral expression of trace formula of the harmonic

oscillator. As for calculation of (255) see Appendix E.

12 Discussion and Dream

We in this paper discussed a geometric method to Quantum Information Theory which
is mostly based on the author’s work. We used several properties of coherent states or
generalized coherent ones based on Lie algebras su(2) and su(1,1). It is not difficult to
extend these to Lie algebras su(n + 1) and su(n, 1) for general n > 2, see [9], [10], [42],
[43].

The parameter spaces of these generalized coherent states are usally (famous) homo-
geneous spaces such as complex projective spaces, Grassmann manifolds (compact cases),
or Poincare disks, Siegel Domains (non— compact cases) in Geometry. Therefore we can
use many tools developed in Global Analysis via generalized coherent states.

However the method is of course not sufficent to give a geometric method to QIT.
There might be several geometric methods (models) in QIT which are unfamiliar to the
author. For example we have not made comments on geometric methods of quantum
algorithms. Please visit arXiv (quant—ph) and look for them.

Geometric understanding of several concepts in QIT is very important because we can
view them from global point of view. This is indispensable for us to understand QIT more

deeply.
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Here let us state our dream once more.

Geometric Quantum Information Theory.
For example,
e Geometric Quantum Computer (Computation)
e Geometric Quantum Cryptgraphy
e Geometric Quantum Teleportation

We believe that we have taken a first step towards this dream. The author expects

strongly that graduate students and/or young researchers in Sciences will take part in our

dream.

Acknowledgment. The author wishes to thank Kunio Funahashi for useful comments and

Yoshinori Machida for a warm hospitality at Numazu College of Technology.

Appendix

A Formula on Associated Laguerre Polynomials
Here we show an interesting formula on associated Laguerre polynomials by making use
of (13) and (14), (15).

JFrom

D(z +w) = e~ 2%"%) D(2)D(w)
we take a matrix element
(n|D(z + w)|n) = " 2*=*) (3| D(2) D(w)|n)

o8



o0

= ¢ 30 S (0| D(2) k) (k| D(w) )

k=0
— ¢ 302 LN ) D(2) k) (k| D(w)|n) + Z (n|D(2)|k) (k| D(w)|n)
k=0 k=n+1
(256)
;From (14), (15)
LHS of (256) = e 2P L (|2 + w]?)
= e w5 (P (12 4 )?) (257)

On the other hand

RHS of (256)

20— ZWw . L1212 k! n— n—k _ L2 k! \n— n—k
| >{ e S g2 LT ) e o () L ()
k=0 : :

M\»—-

=e”
—722 \k—n -n —Ljwl|? n! —-n —-n
by b [ o) e [ ><|w|2>}
k=n+1 :
~Lew—zw) o= () [ 5 R )
= e 2 > (=zo) Ly (2L (wP)
k=0 "t
< nl,
+ 20 (R L () L (o )} (258)
k=n+1 """
Comparing (258) with (257) we have an interesting formula :
Lo(|z + w]?)
Zw = k! n—k y (n—Fk) (n— k k n
= e S By LI )L )+ Y T 2w L ()L ()
k=0 "t k=n+1

(259)

This is considered as a kind of additivity formula. We don’t know whether this formula

has been known or not. For the more generalization see [58].

B Proof of Disentangling Formulas
Here we prove the disentangling formulas (87) and (86) for generalized coherent operators

based on Lie algebras su(1,1) and su(2).
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In general a representation of Lie algebra cannot be lifted to the representation of its
Lie group if a Lie group is not simply connected. We note that SU(1,1) is not simply
connected because m (SU(1,1)) = m(U(1)) = Z.

First we start under the assumption that there is a representation of Lie group SU(1,1).

Namely, let p be a representation of Lie group SU(1,1) C SL(2,C)
p:SL(2,C) — UH®H) (260)

and

Ky =dp(ky), K- =dp(k-), Ks=dp(k-) (261)

0 1 0 0 11 0
by = k= kg == . (262)
0 0 10 210 -1

It is easy to see

where

[k?n k-i-] = k-l—a [k?n k—] = _k—a [k+7 k—] = _2k3 but k-I—T =—k_.
In this case

exp (WK, —wK_) = exp (dp(wk; — wk_))

0 w 0 w
= exp (dp ( )) =p (exp ( )) = p(e?). (263)
w 0 w 0

A% = |w]*E

JFrom

we have

et = cosh(|w|)E + (264)

] sinh (fu)
|w]

w  cosh(|w])

sinh(ful) , (cosh(w) el )

a b
For e4 = ( ) (ad — be = 1), the Gauss decomposition of this matrix is given by

CEReEE
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Since p is a representation of Lie group (not Lie algebra !) we have

where

If we set

—  alo
O Al

(.
§

)
)

— aulo

0
0

o als

)

E
)t

exp(~2logd dp(ks) exp(— Sdp(k-) )

—_

0

]
)

7 L)
)1

logd

)
|

ulo

O Al

o

0
0

|

o

—logd 0

|
')

0

ulo

(266)

W tanh(jw|)w

(=

tanh(|w|)w

(267)

b €] = tanh(Ju)

then we have (87). That is, we could prove (87) under the assumption. To remove this

we needs some tricks.

We define

F(t) = exp {t(wF, — 0K _))} (26)
g(t) = exp{¢(t) Ky } exp{log(1 — [¢(1)]*) K3} exp{—((t) K},
where ((t) = wtaﬁw (269)
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Then

FO)=1, —f(t) = WKy — 0K )f(t). (270)

On the other hand

9(0) =1,

d d . ¢ .
9 = (O K g(t) + - og(1 — [C(£)[2)et" Kgelt KOs = €O — (' (1)g(t) K -

= ' (t) K. g(t) + jtlog(l — [C(8)|2) et Ky DK g(t) — {'(H)g(t) K_g(t) ' g(t)

— {0+ w1 = ORISR eSO~ Eg0K 900 | ol0)

Then it is not difficult to see

6C(t)K+ng—C(t)KJr =K; — Q(t)fﬂr ’
g(t)K_g(t)_l — SOE Jog(1=[C(H)*) K3 pr — log(1=[C(1)[*) K3 ,—C(t) K+

_ o log(1-ICOP) LK+ | o—C(OK

- 1—|1C(75)| (K. — 200K + COPK.)
so that
ig(t)
~{etom. - SO LD (6, i - S0 (1~ 2c0a+ g2 bato)

If we notice

[C(#)] = tanh(t[w]),

¢'(t)C(t) = wl(1 — tanh*(tjw])) tanh(tjw]) = ()¢ (1),
¢ ¢'(t)

= w7 = /II]’
1—|¢(t)[? 1—[¢(t))
then we reach after some algebra
d _
9(t) = (WK, —wK_)g(t). (272)

62



Comparing (272) with (270) we obtain (87).

Similar method is still valid for a representation of Lie group SU(2) to prove (86). Since

we don’t repeat here, so we leave it to the readers.

C Universal Swap Operator

Let us construct the swap operator in a universal manner

U HOH —HH,

Ula®b) =b®a foranya, beH

where H is an infinite-dimensional Hilbert space. Before constructing it we show in the

finite-dimensional case.

For a, b € C? then

aby

Cblb a1b2
agb CLle

asby

so it is easy to see

ja=)
—
o o O

o o O
—_
]

That is, the swap operator is

o o O

b®a

ab;
a1 bs

asby

azbs

o o O

bia;
bias
baay

baas

a by
asb;
a1 by

azby

aby
asb;
a1 by

azby

(273)

This matrix can be written as follows by making use of three Controlled-NOT matrices
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(gates)

1000 100 1000 100 0
0010 0100 0001 0100
= , (274)
0100 0001 0010 0001
0 001 0010 0100 0010
or graphically
Y m Y
A ( (X) ( B
5 ® l ® ’
See for example [18] and [56].
A comment is in order. In this case we can happen to write U as
1 3
U=3 1@1+> o;®0;|, (275)
j=1

where {01, 09,0} are Pauli matrices. But unfortunately we cannot extend this formula
further.
It is not easy for us to conjecture its general form from this swap operator. Let us try for

n = 3. The result is

1 0000O0O0O0O aiby arby
000100O0O0O0 a1by asby
000O0O0OO0OT1QO0O0 aybs asby
01 0000O0O0O asby a1by
00001O0O0O0QO asby | = | aqby
0000O0OO0OO0OT1®O0 asbs asby
001 0O0O0O0O0O asby a1 bs
00 001000 agb asbs
000O0O0OO0O0GO0T1 asbs asbs

(@)
e~



Here we rewrite the swap operator above as follows.

100 00 0 000
00 0 100 00
000 00 0 100
010 00 0 000
U= 00 0 010 000 (276)
00 0 000 010
001 00 0 000
00 001 000
000 00 0 00 1

Now, from the above form we can conjecture the general form of the swap operator.
We note that
(1® 1) = dirdi, (277)

so after some trials we conclude
U:C"C" —C"C"

as

U= Ujn) ; Ujm = 0adjk, (278)
where 17 = 11,12,---,1n,21,22,---,2n, ---, nl,n2,--- nn.
The proof is simple and as follows.

(CL (29 b)” = CLibj — {U(a & b)}l] = Z Uijjklakbl = Z 5i15jkakbl

kl=11 kl=11

=D 0abi Y djar, = bia; = (b® a)i;.
k=1

=1
At this stage there is no problem to take a limit n — oo.
Let H be a Hilbert space with a basis {e,} (n > 1). Then the universal swap operator is
given by

U= (Uijr) 5 Ujw=udj, (279)
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where ¢j = 11,12,---,---.
Problem Is it possible to construct this universal swap operator by making use of some

techniques in Quantum Optics 7

We can in fact construct this by use of some techniques developed in this paper. Let
us prove. Let H be the Fock space with a basis {|n)} (n > 0) defined in Section 2, and

|X) and |Y') be any quantum states in H. Then we show the general formula of swap
[X)eY) — [Y) @ |X). (280)

Let us recall that the typical feature of coherent states |z) (z € C) is the resolution of

unity

[d?2] o _
e = o mtal =1

™

see (9). From this we can expand |X) or |Y') by use of coherent states like

\M):/C[dwz] (z|M)]z) for M =X, Y, (281)
so we have
e = [ [T o iy o ) (28)

However we have shown the swap |2) ® |w) — |w) ® |z) in Section 10.2 by use of the

operator (1 ® ein> Ujy(m/2), so that
//@%ﬂW’YﬂZ\X)IM ®|z) = Y) @ |X). (283)

We finally obtain (280).

D Imperfect Cloning of Quantum States
Here let us state the general theory of our "imperfect cloning”. Let |X) be any element

in the Fock space H. Then by (281) we can write | X) ® |0) as

[d2]

™

Xy @0y = [E24:1X)12) @ [0).
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On the other hand we have constructed the ”imperfect cloning” |2) ®[0) — |cos(|k|)z) ®

|sin(]x|)z) in Section 10.3 by use of the operator (1 ® e”N> U;(|k]), so
[42] .
[ X) ©0) —>/ — (2| X)[cos(|x])2) ® [sin(|x])z). (284)

We have only to calculate the integral in the right hand side. The coherent state |z) is

expanded as

see (6). By expressing | X) as
=> apn) for z,€C
and after some algebras we have

RHS of (280) = 3 1" cogt (] )sin (]} slr) © ).

n,m=0

That is, we finally obtain the general formula of ”imperfect cloning”

el — 3 | R st (s ()l @ ). (285)

n,m=0

In particular when cos(|x|) = sin(|x|) = 1/v/2 we have

(n+m)! o—(n+m)/2
| X) ®|0) H;O o Tnim|n) @ |m). (286)
A comment is in order. The author doesn’t know whether this general formula of

"imperfect cloning” is really useful or not in Quantum Information Theory.

E Calculation of Path Integral

Let us calculate (255) explicitly. Noting zy = zy and rewriting
N
Z {Ej(Zj — ijl) + Z'WAthijl}

ZN

ZN-1

—Z {zjzj — Zz;(1 —iwAt)z;_1} = (Zn,ZN_1, -+, 21)A : =7Z'AZ,

21
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where

1 —(1 — iwAt) 0 0 0
0 1 —(1 —iwAt) 0 0
A pr—
0 0 0 1 —(1—iwAt)
—(1 —iwAt) 0 0 0 1
we have

/ch 11 [ Zj]exp {— Y Az —z0) + Zwmzﬂ'zj‘l}}

=1 =1
N 2
- / H T eXP <_Z AZ) ~ detA’

where we have used that A is a normal matrix (XTX = X XT). Since it is easy to see
detA =1 — (1 —iwAt)",

we obtain

1 1 1
2 p—t 1. I p—g ]_. I " s - . 2

This is just (251).

F Representation from SU(2) to SO(3)

We in this appendix give a useful expression to the well-known representation from SU(2)
to SO(3). This result is no direct relation to the text of this paper, but may become useful

in the near future. Now let us define
p:SU(2) — SO(3).
First of all we note a simple fact :

a+ib c+id
g:

a,b,c,d € R
—c+1id a—1b
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where
geSUR) <= a*+b* +2+d* = 1.

Let us set {01, 09,03} Pauli matrices
01 0 —2 1 0
01 = ) 09 = ’ 03 =
10 0 0 —1

1
T = 50» for j=1,2,3.

and set

The representation p is given as follows : it is easy to see

g g =(a* —b* — A+ d*)m +2(ab+ cd) o — 2(ac — bd)Ts,
g g = —2(ab — cd)7 + (a* — b* + & — d*)1y + 2(ad + be)Ts,

g 39 = 2(ac + bd)r, — 2(ad — be)my + (a® + 0> — & — d*)7s,

so we have
(97'719, 97 720,97 ' 7s9) = (71, 72,73) pl9)
where
a? = —cA+d* —2(ab—cd) 2(ac + bd)
G=p(g) = 2(ab + cd) 22—+ —d® —2(ad — be)
—2(ac — bd) 2(ad + be) a?+0—c*—d?

Here let us transform the above GG. Noting that
a? b~ +d*=1-20b*+ ),
a? = b+ —d*=1-20b*+d*,

P - —d=1-2+d),

from a® + b% + 2 + d? = 1, we have
1—2(0*+¢*)  —2(ab—cd) 2(ac + bd)
G = 2(ab+cd)  1-20*+d*) —2(ad— be)
—2(ac — bd) 2(ad+bc) 1 —2(c*+d?)
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1 00 —2(0* +¢*) —2(ab—cd) 2(ac+ bd)
—l o010 |+]| 2@bted —202+d) —2(ad-be)

001 —2(ac —bd) 2(ad+bc) —2(c*+ d?)

1 00 0 —2ab 2ac —2(b* + %) 2cd 20d
=lo1o|+| 206 0 —2ad |+ 2%d -2 +d?)  2be

001 —2ac  2ad 0 2bd 2bc —2(c* + d?)

1 00 0 —-b ¢ —(0* + ) cd bd
=1010]|+2al b 0 —d|+2 cd —(b* + d?) be

00 1 — d 0 bd be —(*+d*)

If we define M as

0 =b ¢
M= b 0 -—d (289)
—c d 0
then easily
—(0* 4+ ) cd bd
M? = cd —(b* + d?) be )
bd bc —(*+d?)
so we finally obtain
G =1+ 2aM +2M>. (290)

This equation is very simple and interesting.
The author could not find standard books (not papers) in representation theory which

write this equation.
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