Bundle gerbe module の splitting principle について

友田 敦 慶應義塾大学理工学研究科

「量子化の幾何学 2005」 2005年 9月 7日 於 早稲田大学

1. Introduction

Bundle gerbe (Murray): a geometric realization of $H^3(X; \mathbb{Z})$

We can regard this as a higher generalization of a line bundle.

 Bundle gerbe module for a bundle gerbe introduced by Bouwknegt-Carey-Mathai-Murray-Stevenson

regarded as a higher generalization of a complex vector bundle.

A complex vector bundle E

 $\leadsto c(E)$: the Chern class

ch(E): the Chern character

We can construct the twisted Chern character of bundle gerbe modules.

- · classifying space and universal bundle
- · splitting principle
- Chern-Weil construction (← done by BCMMS)

<u>Aim</u> We would like to give an description of twisted Chern class/character in terms of Algebraic Topology.

This is an analogy of splitting principle.

2. Bundle gerbes

2.1 Bundle gerbes

Let

X: a smooth manifold

 $Y \xrightarrow{\pi} X$: a fiber bundle over X

$$Y^{[k]} := \{ (y_1, \dots, y_k) \in Y^k \mid \pi(y_1) = \dots = \pi(y_k) \}$$

$$\pi_i: Y^{[k]} \to Y^{[k-1]}$$

: the map which omits the i-th element $L \to Y^{\text{[2]}}$: a hermitian line bundle

Definition.

(Y, L): a <u>bundle gerbe</u> over X

L is equipped with a product:

$$L_{(y_1,y_2)} \otimes L_{(y_2,y_3)} \xrightarrow{\cong} L_{(y_1,y_3)}$$

for $\forall (y_1, y_2), (y_2, y_3) \in Y^{[2]}$ which has associativity.

To fix a product of L is equivalent to specifying an isomorphism:

$$\pi_3^*L\otimes\pi_1^*L\xrightarrow{\cong}\pi_2^*L.$$

Example(Spin bundle gerbe).

Let

$$Y \to X$$
: a $SO(n)$ -bundle

$$1 \to \mathbb{Z}_2 \to Spin(n) \xrightarrow{p} SO(n) \to 1$$

: a central extension

Then we have a \mathbb{Z}_2 -bundle over $Y^{[2]}$

$$Q := \{ ((y_1, y_2), \alpha) \in Y^{[2]} \times Spin(n) | p(\alpha)y_1 = y_2 \}.$$

Let

L: the line bundle over $Y^{[2]}$ associated with \mathbb{Z}_2 -bundle Q.

Then

(Y,L) is a bundle gerbe over X called the spin bundle gerbe of Y.

<u>Definition</u>(trivialization).

 $\eta \to Y$: a <u>trivialization</u> of (Y, L) \iff

 $\eta \to Y$: a hermitian line bundle and $\pi_1^*\eta^* \otimes \pi_2^*\eta \cong L.$

A bundle gerbe (Y, L) is called <u>trivial</u> iff there is a trivialization η .

Definition(stable isomorphism).

Let (Y, L) and (Z, M) be bundle gerbes over X. (Y, L) is stable isomorphic to (Z, M)

 $(Y \times_{\pi} Z, L^* \otimes M)$: trivial

For every bundle gerbe (Y, L) over X, we have the Dixmier-Douady class $d(Y, L) \in H^3(X; \mathbb{Z})$.

Theorem (Murray).

 $d: \frac{\{\text{bundle gerbes over } X\}}{\text{stable iso.}} \stackrel{\cong}{\longrightarrow} H^3(X; \mathbb{Z}),$

<u>Definition</u>(bundle gerbe connection).

A hermitian connection ∇ on Y

is a bundle gerbe connection on (Y, L)

 \iff

The product of L:

$$\pi_3^*L\otimes\pi_1^*L\xrightarrow{\cong}\pi_2^*L$$

preserves the connections:

$$\pi_3^* \nabla \otimes 1 + 1 \otimes \pi_1^* \nabla$$
 on $\pi_3^* L \otimes \pi_1^* L$, $\pi_2^* \nabla$ on $\pi_2^* L$

Definition.

We have the sequence of fiber products:

$$X \stackrel{\pi}{\leftarrow} Y \leftarrow Y^{[2]} \leftarrow Y^{[3]} \leftarrow \cdots$$

and

$$0 \to \Omega^*(X) \xrightarrow{\delta} \Omega^*(Y) \xrightarrow{\delta} \Omega^*(Y^{[2]}) \to \cdots,$$

where $\delta: \Omega^*(Y^{[k]}) \to \Omega^*(Y^{[k+1]})$ is defined by

$$\delta\omega = \sum_{i=1}^{k+1} (-1)^i \pi_i^* \omega.$$

Proposition.

This sequence is exact.

Remark. We have

$$dF(\nabla) = 0$$
 and $\delta F(\nabla) = 0$

and hence there is $f \in i\Omega^2(Y)$ satisfying

$$-\pi_1^* f + \pi_2^* f = F(\nabla).$$

We call such f a <u>curving</u> of (Y, L).

2.2 Bundle gerbe modules and the twisted Chern character

Let

(Y,L): a bundle gerbe over X with a given bundle gerbe connection ∇ and curving f

 $W \rightarrow Y$: a hermitian vector bundle

Definition(bundle gerbe module).

W: a <u>bundle gerbe module</u> for (Y,L)

W is endowed with a multiplication of L:

$$L_{(y_1,y_2)} \otimes W_{y_2} \xrightarrow{\cong} W_{y_1}$$

for $\forall (y_1, y_2) \in Y^{[2]}$ which has the commutativity.

We denote by Mod(Y, L) the isomorphism classes of bundle gerbe modules for (Y, L).

To fix multiplication of ${\cal L}$ is equivalent to specifying an isomorphism

$$\varphi: L \otimes \pi_1^* W \to \pi_2^* W.$$

In the case that (Y, L) is trivial, we have

$$\pi_1^* \eta^* \otimes \pi_2^* \eta \otimes \pi_1^* W \cong L \otimes \pi_1^* W \cong \pi_2^* W$$
$$\rightsquigarrow \pi_1^* (W \otimes \eta^*) \cong \pi_2^* (W \otimes \eta^*)$$

So, a trivialization η of (Y, L) induces

$$/\eta: \mathsf{Mod}(Y,L) \to \mathsf{Vect}(X)$$

satisfying $\pi^*(W/\eta) = W \otimes \eta^*$.

Assumption

• the Dixmier-Douady class d(Y, L) of (Y, L) is a torsion element.

i.e.
$$nd(Y, L) = 0$$
 for some n .

• the curving f is closed, i.e. df = 0.

<u>Definition</u>(bundle gerbe module connection).

A hermitian connection ∇^W on W is

a bundle gerbe module connection for ∇

The multiplication of L:

$$\varphi: L \otimes \pi_1^* W \to \pi_2^* W$$

preserves the connections:

$$abla\otimes 1+\pi_1^*
abla^W \quad \text{on} \quad L\otimes \pi_1^*W, \\ \pi_2^*
abla^W \quad \text{on} \quad \pi_2^*W$$

Remark.

For every bundle gerbe module connection $abla^W$,

$$F(\nabla)\otimes 1+\pi_1^*F(\nabla^W)=\varphi\circ\pi_2^*F(\nabla^W)\circ\varphi^{-1}$$
 which implies

$$\pi_1^*(f + F(\nabla^W)) = \varphi \circ \pi_2^*(f + F(\nabla^W)) \circ \varphi^{-1}.$$

Therefore,

$$d \operatorname{tr}\left(\left(\frac{-1}{2\pi i}(f + F(\nabla^W))\right)^k\right) = 0$$

and

$$\pi_1^* \operatorname{tr} \left(\left(\frac{-1}{2\pi i} (f + F(\nabla^W)) \right)^k \right)$$

$$= \pi_2^* \operatorname{tr} \left(\left(\frac{-1}{2\pi i} (f + F(\nabla^W)) \right)^k \right).$$

So, we have $\exists !$ closed form $\eta_k \in \Omega^{2k}(X)$ satisfying

$$\pi^* \eta_k = \operatorname{tr}\left(\left(\frac{-1}{2\pi i}(f + F(\nabla^W))\right)^k\right).$$

for $\forall k$.

<u>Definition</u>(the twisted Chern character).

We define

the twisted Chern character $\operatorname{ch}_{\operatorname{DG}}^{\tau}(W)$ of W by

$$\operatorname{ch}_{\mathsf{DG}}^{\tau}(W) := \operatorname{rank} W + \sum_{k=1}^{\infty} \frac{1}{k!} [\eta_k] \in H^{2*}(X; \mathbb{R}).$$

Remark. The twisted Chern character ch_{DG}^{τ} is independent of the bundle gerbe connection and the bundle gerbe module connection but depends on the curving.

3. Splitting principle for bundle gerbe modules

3.1. Construction of splittings.

 $\begin{array}{l} \underline{\mathbf{Definition}}(\ n\text{-trivialization}\).\\ (Y,L): \ \text{a bundle gerbe over } X\\ \qquad \qquad \text{with } nd(Y,L) = 0 \ \text{for some } n.\\ (\ \text{hence, } (Y,L^{\otimes n}): \ \text{a trivial bundle gerbe}\)\\ \eta: \ \underline{\text{an } n\text{-trivialization}} \ \text{of } (Y,L)\\ \Longleftrightarrow\\ \eta: \ \text{a trivialization of } (Y,L^{\otimes n}) \end{array}$

Remark.

(Y,L) : a bundle gerbe over X given an $n\text{-trivialization }\eta$ Then η induces a semi-group homomorphism

 $\mathsf{Mod}(Y,L) \xrightarrow{\otimes n} \mathsf{Mod}(Y,L^{\otimes n}) \xrightarrow{/\eta} \mathsf{Vect}(X)$ which satisfies

$$\pi^*(W^{\otimes n}/\eta) = W^{\otimes n} \otimes \eta^*.$$

Take the projectivization

$$\widetilde{\mathbb{P}}(W) := \bigsqcup_{y \in Y} \{y\} \times \mathbb{P}(W_y)$$

of a bundle gerbe module W for (Y, L).

Remark.

The multiplication of L for W

$$L_{(y_1,y_2)} \otimes W_{y_2} \xrightarrow{\cong} W_{y_1}$$

induces isomorphisms

$$\varphi_{(y_1,y_2)}: \mathbb{P}(W_{y_2}) \to \mathbb{P}(W_{y_1})$$

Definition

We define $\mathbb{P}(W)$ by

$$\mathbb{P}(W) := \widetilde{\mathbb{P}}(W) / \sim$$

Here, we define

$$(y_1, [w_1]) \sim (y_2, [w_2]) \iff \varphi_{(y_1, y_2)}([w_2]) = [w_1].$$

Remark.

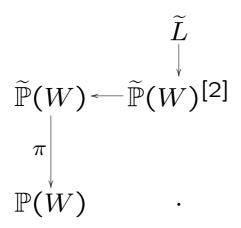
We have a commutative diagram:

Definition.

We define a bundle gerbe $(\widetilde{\mathbb{P}}(W),\widetilde{L})$ over $\mathbb{P}(W)$ by

$$\widetilde{L} := \overline{p}^*(L).$$

That is,



Proposition.

Let γ_W be the tautological line bundle over $\widetilde{\mathbb{P}}(W)$ defined by

$$\gamma_W = \{(y, l, w) \in \overline{p}^*(W) \mid y \in Y, l \in \mathbb{P}(W_y), w \in l\}.$$

Then, γ_W and W^{\perp} are bundle gerbe modules for $(\widetilde{\mathbb{P}}(W), \widetilde{L})$.

Hence, we obtain the splitting of a bundle gerbe module W:

$$\overline{p}^*W = \gamma_W \oplus W^{\perp}.$$

We call γ_W the <u>tautological bundle gerbe module</u> of W.

3.2. the twisted Chern classes.

Definition(the twisted Euler class)

(Y,L): a bundle gerbe over X given an n-trivialization η

 ξ : a bundle gerbe module for (Y, L) with rank $\xi = 1$.

We define the twisted Euler class $\chi^{\tau}(\xi)$ by

$$\chi^{\tau}(\xi) := \frac{1}{n}((\xi^{\otimes n})/\eta).$$

By using this, we can define a homomorphism θ of degree 0:

$$heta: H^*(\mathbb{CP}^{m-1}; \mathbb{Q}) o H^*(\mathbb{P}(W); \mathbb{Q})$$
 by $heta(\chi(\gamma(\mathbb{CP}^{m-1}))^k) = \chi^{\tau}(\gamma_W)^k$ for $\forall k$.

Consider

$$i_x: \mathbb{P}(W)_x \hookrightarrow \mathbb{P}(W).$$

It is easy to see that for every $x \in X$,

$$i_x^* \circ \theta : H^*(\mathbb{CP}^{m-1}; \mathbb{Q}) \to H^*(\mathbb{P}(W)_x; \mathbb{Q})$$

is isomorphism.

Therefore, by using the Leray-Hirsch theorem we obtain the following:

Theorem. We have the isomorphism of graded modules

$$\Phi: H^*(X; \mathbb{Q}) \otimes H^*(\mathbb{CP}^{m-1}; \mathbb{Q}) \to H^*(\mathbb{P}(W); \mathbb{Q})$$
 defined by
$$\Phi(\beta \otimes \alpha) = p^*\beta \cup \theta(\alpha).$$

Hence, there is an unique m-tuple

$$(\beta_1,\ldots,\beta_m)\in\prod_{i=k}^m H^{2k}(X;\mathbb{Q})$$

satisfying

$$-\chi^{\tau}(\gamma_W)^m = \sum_{k=1}^m (-1)p^*\beta_k \cup \chi^{\tau}(\gamma_W)^{m-k}$$

$$c_k^\tau(W) = \left\{ \begin{array}{ll} 1 & \text{if } k = 0, \\ \beta_k & \text{if } 1 \leq k \leq m, \\ 0 & \text{otherwise.} \end{array} \right.$$

Proposition.

1. (naturality)

$$c^{\tau}(\overline{f}^*W) = f^*c^{\tau}(W)$$

for every smooth map $f: X \to Z$ and bundle gerbe module W.

2. $\exists p: \hat{X} \to X$ such that

$$p^*: H^*(X; \mathbb{Q}) \to H^*(\hat{X}; \mathbb{Q})$$
: injective

and \overline{p}^*W splits into m bundle gerbe modules ξ_i of rank 1:

$$\overline{p}^*W \cong \xi_1 \oplus \cdots \oplus \xi_m$$

3.
$$c^{\tau}(V \oplus W) = c^{\tau}(V) \cup c^{\tau}(W)$$
.

Let

 σ_k : the k-th elementary symmetric polynomial in m variables

 s_k : the k-th Newton polynomial in m variables.

These satisfy

$$t_1^k + \cdots + t_m^k = s_k(\sigma_1, \ldots, \sigma_k).$$

<u>**Definition**</u>(the twisted Chern character in algebraic topology).

We define the twisted Chern character $\operatorname{ch}_{\mathsf{AT}}^{\tau}(W)$ in terms of Algebraic Topology by

$$\operatorname{ch}_{\mathsf{AT}}^{\tau}(W) := \operatorname{rank} W + \sum_{k} \frac{1}{k!} s_{k}(c_{1}^{\tau}(W), \dots, c_{k}^{\tau}(W)).$$

Properties.

- 1. $\operatorname{ch}_{\mathsf{AT}}^{\tau}(V \oplus W) = \operatorname{ch}_{\mathsf{AT}}^{\tau}(V) + \operatorname{ch}_{\mathsf{AT}}^{\tau}(W)$.
- 2. $\operatorname{ch}_{\mathsf{AT}}^{\tau}(V \otimes W) = \operatorname{ch}_{\mathsf{AT}}^{\tau}(V) \cup \operatorname{ch}_{\mathsf{AT}}^{\tau}(W)$.
- 3. $\operatorname{ch}(W^{\otimes n}/\eta) = \operatorname{ch}_{\mathsf{AT}}^{\tau}(W)^n$.

Definition(compatible curving).

(Y,L): a bundle gerbe over X with a given n-trivialization η

A curving f of (Y,L) is $\underline{\text{compatible}}$ with the $n\text{-trivialization }\eta$

$$\iff$$

 $\exists \nabla^{\eta}$: a hermitian connection on η which satisfies

$$f = F(\nabla^{\eta})/n.$$

Theorem (\top) .

(Y,L): a bundle gerbe over X with a given n-trivialization η and a compatible curving f with η .

Then for every bundle gerbe module W, we have

$$\operatorname{ch}_{\mathsf{DG}}^{\tau}(W) = \operatorname{ch}_{\mathsf{AT}}^{\tau}(W).$$