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1. Introduction

. Bundle gerbe(Murray):
a geometric realization of H3(X:;Z)

We can regard this as a higher generalization
of a line bundle.

- Bundle gerbe module for a bundle gerbe
introduced by Bouwknegt-Carey-
Mathai-Murray-Stevenson

regarded as a higher generalization of a com-
plex vector bundle.



A complex vector bundle E
~ ¢(FE) : the Chern class
ch(FE) : the Chern character

We can construct the twisted Chern character
of bundle gerbe modules.

- classifying space and universal bundle
- splitting principle
. Chern-Weil construction (+— done by BCMMS)

Aim We would like to give an description of
twisted Chern class/character in terms of Al-
gebraic Topology.

This is an analogy of splitting principle.



2. Bundle gerbes
2.1 Bundle gerbes

Let
X : a smooth manifold
Y X, X ¢ a fiber bundle over X

YR = {(y1,...,0) € YF | n(y1) = =7 (yp)}
YT yle-1

. the map which omits the -th element
L — Y2l - 3 nermitian line bundle

Definition.
(Y,L) : a bundle gerbe over X
<

L is equipped with a product:

Ly ) @ Lyos) = Lyr,ys)

for V(y1, o), (y2,y3) € Y2 which has associa-
tivity.

To fix a product of L is equivalent to specifying
an isomorphism:

3L @ w1 L = 5 L.



Example(Spin bundle gerbe).
et
Y — X: a SO(n)-bundle
1 — Zo — Spin(n) & SO(n) — 1
. a central extension
Then we have a Zo-bundle over Y2l

Q = {((y1,2), @) € YPIxSpin(n)|p(a)y1 = ya}-

Let
L : the line bundle over Y (2]
associated with Zo-bundle Q.
Then
(Y, L) is a bundle gerbe over X
called the spin bundle gerbe of Y.




Definition(trivialization).

n — Y : a trivialization of (Y, L)
=

n — Y : a hermitian line bundle and
TNt @ min = L.

A bundle gerbe (Y, L) is called trivial iff there
is a trivialization n.

Definition(stable isomorphism).

Let (Y, L)and (Z, M) be bundle gerbes over X.
(Y, L) is stable isomorphic to (Z, M)

S

(Y Xz Z,L*® M) : trivial

For every bundle gerbe (Y, L) over X, we have
the Dixmier-Douady class d(Y, L) € H3(X:; Z).

T heorem(Murray).

bundle gerbes over X! =~
A IETDE ) = H3(X;17),
stable iso.




Definition(bundle gerbe connection).
A hermitian connection V on Y
is @ bundle gerbe connection on (Y, L)

<—
The product of L:

3L @ i L — w5 L
preserves the connections:

mV®1+17V on w3l niL,
5V on w5 L



Definition.
We have the sequence of fiber products:

v Ty vl yBl
and
0—-"(xX) L (V) L'yl — ...
where § : Q*(YI¥) — Q*(vIk+1]y) is defined by

k41 |
bw= > (—1)'miw.
1=1

Proposition.
T his sequence is exact.

Remark. We have

dF(V) =0 and 6§F(V) = 0
and hence there is f € iQ2(Y) satisfying
—m1f +75f = F(V).
We call such f a curving of (Y, L).




2.2 Bundle gerbe modules and the twisted
Chern character

et
(Y, L): a bundle gerbe over X
with a given bundle gerbe connection V
and curving f

W — Y: a hermitian vector bundle

Definition(bundle gerbe module).

W . a bundle gerbe module for (Y, L)
<—

W is endowed with a multiplication of L:

Ly, o) @ Wyy — Wy,

for V(y1,y2) € Y2l which has the commutativ-
ity.

We denote by Mod(Y, L) the isomorphism classes
of bundle gerbe modules for (Y, L).

To fix multiplication of L is equivalent to spec-
ifying an isomorphism

¢ Lr]W — n5W.



In the case that (Y, L) is trivial,we have

TN Q@man@mIW = L a]W = n5W
~ (W @n*) = m5(W en")

So, a trivialization n of (Y, L) induces
/mn : Mod(Y, L) — Vect(X)
satisfying n*(W/n) = W ® n*.



Assumption
- the Dixmier-Douady class d(Y, L) of (Y, L)
is a torsion element.
i.e. nd(Y,L) =0 for some n.
- the curving f is closed, i.e. df = 0.

Definition(bundle gerbe module connection).
A hermitian connection VW on W is
a bundle gerbe module connection for V

<—
The multiplication of L:

¢: LRm]W — m5W
preserves the connections:

V® 1—|—7TTVW on L@WTW,
WEVW on T5W
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Remark.
For every bundle gerbe module connection vW

FWM)@1+miF(VY)Y=pomF(VW)o et
which implies

i (f+F(VY) =goms(f + F(VV)) oo™t
Therefore,

d tr ((;—;(f + F(VW»)k) =0

and
-1 k
ritr (G0 +FOVD) )
—1 k
= 75t ((Q—M(f + F(VW))) ) .
So, we have 3! closed form n € 22%(X) satis-
fying
e = tr (=2 v '
eme=tr (o +FY)) ).

for Vk.
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Definition(the twisted Chern character).
We define

the twisted Chern character ch (W) of W
by

oo
1
chhg(W) :=rank W+ Y E[nk] e H>*(X;R).
k=1"""

Remark. The twisted Chern character chjs
is independent of the bundle gerbe connection
and the bundle gerbe module connection but
depends on the curving.
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3. Splitting principle for bundle gerbe
modules

3.1. Construction of splittings.

Definition( n-trivialization ).
(Y,L) : a bundle gerbe over X
with nd(Y, L) = 0 for some n.
( hence, (Y, L®™) : a trivial bundle gerbe )

n : an n-trivialization of (Y, L)
<~
n : a trivialization of (Y, L®")

Remark.
(Y,L) : a bundle gerbe over X
given an n-trivialization n
Then nn induces a semi-group homomorphism

Mod(Y, L) &% Mod(y, L&) L% vect(X)
which satisfies

(WO n) = W @ n*.
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Take the projectivization

P(W) = | | {y} x P(Wy)
yey

of a bundle gerbe module W for (Y, L).

Remark.
The multiplication of L for W

Lyy y0) @ Wya — Wy,

induces isomorphisms

P(y1,y2) - P(Wy,) — P(Wy,)

Definition
We define P(W) by

P(W) := P(W)/ ~

Here, we define

(y1, [wi1l]) ~ (y2, [wa]) <= ¥(y; yo) (lw2]) = [w1].
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Remark.
We have a commutative diagram:

X-—L-P(W)

Definition.
We define a bundle gerbe (P(W), L)
over P(W) by

That is,

P(W)-—P(W)2l

P(W)
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Proposition.
Let vy be the tautological line bundle over
P(W) defined by

W —

{(y,,w) ep*(W) |y € Y,l € P(Wy),w € }.
Then, vy and WL are bundle gerbe modules
for (P(W),L).

Hence, we obtain the splitting of a bundle gerbe
module W

W =yw e W,

We call vy the tautological bundle gerbe module
of W.
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3.2. the twisted Chern classes.

Definition( the twisted Euler class )
(Y,L): a bundle gerbe over X
given an n-trivialization n
€. a bundle gerbe module for (Y, L)
with rankgé = 1.
We define the twisted Euler class x7 (&) by

X(©) = (€ /).

By using this, we can define a homomorphism
6 of degree O:

6 : H*(CP"1.Q) — H*(P(W); Q)
by 0(x(v(CP"~1))*) = X7 (yy)¥ for Vk.

Consider
iz P(W)y — P(W).
It is easy to see that for every z € X,
iv o0 : H*(CP" 1 Q) — H*(P(W)z; Q)
IS isomorphism.
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Therefore, by using the Leray-Hirsch theorem
we obtain the following:

T heorem. We have the isomorphism of graded
modules

®: H*(X;Q) @ H*(CP"1:Q) —» H*(P(W); Q)
defined by ®(B® a) = p*BU ().

Hence, there is an unique m-tuple

(1. ) € T] HH(XQ)

1=k
satisfying

m

X" ()™= 3 (=1)p* B U X (y)™ "
k=1
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Definition We define the twisted Chern class
of W by

1 if k=0,
c};(W): Br 1IT1<k<m,
0O otherwise.

Proposition.
1. (naturality)

T(fW) = fT (W)
for every smooth map f: X — Z

and bundle gerbe module W.
2. dp: X — X such that

p* H*(X;Q) — H*(X;Q) : injective

and p*W splits into m bundle gerbe modules ¢;
of rank 1:

PWE6LS - ém

3. (VW)= (V)Uc(W).
19



Let

oy . the k-th elementary symmetric polynomial
in m variables

si. the k-th Newton polynomial in m variables.

T hese satisfy

t]f+"'+t7]?1128k(017"'70k)‘

Definition(the twisted Chern character

in algebraic topology).
We define the twisted Chern character ch}— (W)
in terms of Algebraic Topology by

1
ChiT (W) = rank W3 —si(F(W), ..., cL(W).
~ k!

Properties.

1. cham- (Ve W) =chi+ (V) + chi(W).
2. cham- (V@ W) =chj+(V)Uchj+(W).
3. ch(W®"/n) = chi+(W)™.
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Definition( compatible curving ).
(Y,L) : a bundle gerbe over X
with a given n-trivialization n
A curving f of (Y,L) is compatible with the
n-trivialization 7
—
AV . a hermitian connection on n which sat-
isfies

f=F(N/n.

Theorem(T).
(Y,L) : a bundle gerbe over X
with a given n-trivialization n
and a compatible curving f with n.

Then for every bundle gerbe module W, we
have

chhg(W) = chjT(W).
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