Euler-Lagrange EDS and Noether's Theorem

Tadayoshi MIZUTANI Saitama University, Saitama, 338–8570, Japan.

2007/9/7(Fri.) At Waseda Univ.

Contents

1	Introduction	2
2	Lagrangian forms on a contact manifold	4
3	Variation of a Legendre submanifold	8
4	Conservation Laws and Noether's Theorem	11
5	Example: Minimal surfaces	15

1 Introduction

Classical mechanics:

• $L \in C^{\infty}(TM^n)$ Lagrange function; locally, $L = L(q^i, \dot{q}^i)$ \Rightarrow Funtional \mathcal{L} on the space of paths $\{l = q(t)\}$ in M:

$$\mathcal{L}(l) = \int_0^1 L(q(t), \dot{q}(t)) dt.$$

By calculus of variation, obtain the Euler-Lagrange equation

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}^i} \right) - \frac{\partial L}{\partial q^i} = 0.$$

Also, we have

• Symmetry of $L \Rightarrow$ Conservation law (1-st integrals)[Noether].

A similar arguement for the Legendre submanifolds in a contact manifold M of dimension 2n+1.

- Lagrangian n-form Λ
 - \Rightarrow Functional \mathcal{L} on the space of Legendrian submanifolds
 - ⇒ Euler-Lagrange differential system (Monge-Ampere differential system)

$$\mathcal{E}_{\Lambda} = \{\theta, d\theta, \Psi\}, \qquad \Psi : n\text{-form.}$$

What I will talk is a part of the discussion of

Exterior Differential Systems and Euler-Lagrange Prtial Differential Equations (by R.Bryant, P.Griffiths and D. Grossman).

University of Chicago Press, 2003. (Book review Bull. of A.M.S. 2005 Vol. 42)

2 Lagrangian forms on a contact manifold

Def 1. Let M be a conatct manifold, dim M = 2n + 1, θ contact 1-form.

- (a) I: contact line bundle generate by θ , $I = \langle \theta \rangle$
- (b) \mathcal{I} : ideal generated by $\{\theta, d\theta\}$ in exterior algebra $\Omega(M)$.
- (c) A Legendre submanifold is an n-dimensional integral manifold of \mathcal{I} , i.e. $\theta|_N=0$.

Examples

- $J^1(\mathbb{R}^n, \mathbb{R})$: 1-jets of funtions, 2n+1 dim.
- $G_n(T\mathbb{R}^{n+1})$: set of n-dim oriented subspaces of tangent spaces. (\cong sphere bundle over \mathbb{R}^{n+1}).

Lagrangian n-form

- \bullet (M, I): contact manifold.
- Λ : n-form.
- \bullet N: Legendre submanifold.

Want consider the integral (functional)

$$\mathcal{F}_{\Lambda}(N) = \int_{N} \Lambda$$
.

- (1) If $\Lambda \in \mathcal{I}$, $\mathcal{F}_{\Lambda}(N) = 0$, (N : Legendrian).
- (2) If $\Lambda \Lambda' = d\phi$ and we fix the ∂N ,

$$\int_{N} \Lambda - \int_{N} \Lambda' = \int_{\partial N} \phi.$$

Thus, better to consider $[\Lambda]$ as a class in $\Omega^n(M)$ modulo $\mathcal{I} + d\Omega^{n-1}$.

To see Λ is closed in the differential complex $\Omega(M)/\mathcal{I}$, we need **Lemma 1** .V symplectic vector space, Θ non-deg.bi-lin.form.

- $\bigwedge^{n-k}(V^*) \xrightarrow{\Theta^k \wedge} \bigwedge^{n+k}(V^*)$ is an isomorphism, $(0 \le k \le n)$.
- $\Theta^{k+1} \wedge : \bigwedge^{n-k}(V^*) \longrightarrow \bigwedge^{n+k+2}(V^*)$ gives a decomposition

$$\bigwedge^{n-k}(V^*) \cong \ker(\Theta^{k+1} \wedge) \oplus (\Theta \wedge \bigwedge^{n-k-2}(V^*)).$$

In particular, $\bigwedge^{n+1}(V^*)$ is in image $(\Theta \wedge)$.

The elements in $\ker(\Theta^{k+1}\wedge)$ are called *primitive*.

Apply the lemma for $\Omega(M)/\langle\theta\rangle$. Then, $d\Lambda \in \Omega^{n+1}(M)/\langle\theta\rangle$ is in the image of $(d\theta\wedge)$ i.e. $d\Lambda = 0$ in $\Omega(M)/\mathcal{I}$. Our Lagrangian is an element $[\Lambda] \in H^n(\Omega(M)/\mathcal{I})$.

Poincaré-Cartan form

From the short exact sequence of complexes

$$0 \to \mathcal{I} \to \Omega(M) \to \Omega(M)/\mathcal{I} \to 0$$

we have

$$\cdots \to H^n_{dR}(M) \to H^n(\Omega(M)/\mathcal{I}) \xrightarrow{\delta} H^{n+1}(\mathcal{I}) \to \cdots$$

The P-C form is the (n+1)-form Π representing $\delta[\Lambda]$, which is uniquely defined on the condition $\theta \wedge \Pi = 0$ (i.e. $\Pi = 0$, mod $\langle \theta \rangle$).

By $d\Lambda = \theta \wedge \alpha + d\theta \wedge \beta = \theta \wedge (\alpha + d\beta) + d(\theta \wedge \beta)$ the existence of Π s.t. $\theta \wedge \Pi = 0$ is clear. Uniqueness of Π is proved by using the Lemma.

Thus $\Pi = \theta \wedge (\alpha + d\beta)$.

Also, since $d\Lambda \in \Omega^{n+1}$, there exists β' such that $d\theta \wedge \beta' = \Lambda$, mod $(I = \langle \theta \rangle)$ (Lemma). This β satisfies $d(\Lambda - \theta \wedge \beta') = 0$, mod $\{\theta\}$. By the uniqueness, $\Pi = d(\Lambda - \theta \wedge \beta')$. Thus, we have $\Pi = \theta \wedge (\alpha + d\beta) = d(\Lambda - \theta \wedge \beta')$ The last β' is uniquely determined element (mod I) such that $\Lambda - \theta \wedge \beta'$ is closed (mod I).

3 Variation of a Legendre submanifold

- (a) (M, I); a contact manifold, $I = \langle \theta \rangle$.
- (b) $(N, \partial N)$; C^{∞} compact n-dim. $F: N \times [0, 1] \to M$, 1-para. family of Legendre submfds: $F^*\theta|_{N \times \{t\}} = 0$, $F|_{\partial N \times [0, 1]} = F|_{\partial N \times \{0\}}$.
- (c) $[\Lambda] \in H^n(\Omega(M)/\mathcal{I}), \quad \Pi = d(\Lambda \theta \wedge \beta)$: Poincaré-Cartan form.

$$\begin{split} \frac{d}{dt}\mathcal{F}_{\Lambda}(F(N\times\{t\})) &= \frac{d}{dt}\int_{F(N\times\{t\})} \Lambda = \frac{d}{dt}\int_{N\times\{t\}} F^*\Lambda \\ &= \frac{d}{dt}\int_{N\times\{t\}} F^*(\Lambda-\theta\wedge\beta) = \int_{N\times\{t\}} \mathcal{L}_{\frac{\partial}{\partial t}} F^*(\Lambda-\theta\wedge\beta) \\ &= \int_{N\times\{t\}} \iota_{\frac{\partial}{\partial t}}(dF^*(\Lambda-\theta\wedge\beta)) + \int_{N\times\{t\}} d(\iota_{\frac{\partial}{\partial t}} F^*(\Lambda-\theta\wedge\beta))) \\ &= \int_{N\times\{t\}} \iota_{\frac{\partial}{\partial t}}(F^*d(\Lambda-\theta\wedge\beta)) + \int_{\partial N\times\{t\}} \iota_{\frac{\partial}{\partial t}} F^*(\Lambda-\theta\wedge\beta) \\ &= \int_{N\times\{t\}} F^*(\iota_{F_*\frac{\partial}{\partial t}}\Pi) + \int_{\partial N\times\{t\}} F^*(\iota_{F_*\frac{\partial}{\partial t}}(\Lambda-\theta\wedge\beta)) \\ &= \int_{F(N\times\{t\})} \iota_{F_*(\frac{\partial}{\partial t})}\Pi + 0. \end{split}$$

If $F(N \times \{0\})$ is extremal(stationary)

$$0 = \frac{d}{dt} \int_{N \times \{t\}} F^* \Lambda|_{t=0} = \int_{F(N \times \{0\})} \iota_{F_*(\frac{\partial}{\partial t})} \Pi$$
$$= \int_{F(N \times \{0\})} \iota_{F_*(\frac{\partial}{\partial t})}(\theta \wedge \Psi) = \int_{F(N \times \{0\})} \theta(F_* \frac{\partial}{\partial t}) \Psi$$

Locally, $\theta = dy - \sum_{i=1}^{n} z_i dx^i$ and $F(N \times \{0\})$ is $\{x, 0, 0\}$. For arbitrary function g(x), $F(N \times \{t\}) = (x, tg(x), t\frac{\partial g}{\partial x})$ is Legendre and $\theta(F_* \frac{\partial}{\partial t}) = g(x)$. Thus $F(N \times \{0\})$ is extremal Legendre mfd $\Leftrightarrow \Psi = 0$ on $F(N \times \{0\})$.

 $N = F(N \times \{0\})$ is an integral manifold of E.D.S., called *Euler-Lagrange differential system*

$$\{\theta, d\theta, \Psi\}_{\text{alg}}$$
.

Def 2. Generally, a Monge-Ampére differential system on (M, I) is $\mathcal{E} = \{\theta, d\theta, \Psi\}_{\text{alg}}$ where Ψ is an n-form. $(n \geq 2)$.

E-L differential system is a Monge-Ampére system. In E-L system, since $\Pi = \theta \wedge \Psi$ is closed $d\theta \wedge \Psi = 0 \pmod{\theta}$, i.e. Ψ is primitive (mod θ).

Classical M-A equation is a 2nd order diff. equation for z(x,y) On $J^2(\mathbb{R}^2,\mathbb{R})$, with coord. (x,y,z,p,q,r,s,t)

$$Ar + 2Bs + Ct + D + E(rt - s^2) = 0, \quad A = A(x, y, z, p, q), \dots$$

This is equiv. to a EDS on $J^1(\mathbb{R}^2, \mathbb{R})$

$$\{\theta = dz - pdx - qdy, -d\theta = dp \wedge dx + dq \wedge dy, \Psi\} \qquad (n = 2)$$

$$\Psi = Adp \wedge dy + B(dq \wedge dy - dp \wedge dx) - Cdq \wedge dx + Ddx \wedge dy + Edp \wedge dq.$$

Inverse problem

When M-A system is an E-L system?

Theorem(B.G.G.) Let $\mathcal{E} = \{\theta, d\theta, \Psi\}$ be a M-A system on $M^{2n+1}, n \geq 2$. Assume Ψ is primitive. Then \mathcal{E} is locally equivalent to E-L system iff

$$d(\theta \wedge \Psi) = \phi \wedge (\theta \wedge \Psi)$$

where ϕ satisfies $d\phi = 0 \pmod{\mathcal{I}}$. (c.f. Theory of variational bi-complex)

4 Conservation Laws and Noether's Theorem

Noether's Theorem in classical mechanics

(equivariant moment map \Rightarrow constants of motion) [Hamiltonian mechanics]

Lagrangian formulation: vector field preserving Lagrangian function $L: TM \to \mathbb{R} \Rightarrow 1$ -st integrals of Euler-Lagrange eq.

X a vector field on M, \tilde{X} : prolongation to TM. Assume \tilde{X} preserves the Lagrangian L. There is a canonical~(1,1)- $tensor~\Phi$ on TM, written locally as $\frac{\partial}{\partial \dot{a}^i} \otimes dq^i$. Then

$$\Phi(dL, \tilde{X})$$

is a first integral. Locally, $\Phi(dL, \tilde{X}) = \sum_{i=1}^{n} \frac{\partial L}{\partial \dot{q}^{i}} X^{i}$ $\left(X = \sum_{i=1}^{n} \frac{\partial}{\partial q^{i}} X^{i}\right)$. Legendre transf. $TM \to T^{*}M$ is given by

$$(q^i, \dot{q}^i) \to \Phi(dL, \cdot) = \frac{\partial L}{\partial \dot{q}^i} dq^i.$$

In the present case $(M, \mathcal{E}_{\Lambda} = \{\theta, d\theta, \Psi\})$, symmetries are the following vector fields:

$$\mathcal{G}_{[\Lambda]} = \{ v \in \mathcal{V}(M) | \mathcal{L}_v I \subset I, \mathcal{L}_v [\Lambda] = 0 \}.$$

$$\mathcal{G}_{\Pi} = \{ v \in \mathcal{V}(M) | \mathcal{L}_v \Pi = 0 \}.$$

Rem 1 Can be shown $\mathcal{G}_{[\Lambda]} \subset \mathcal{G}_{\Pi}$ and $\mathcal{L}_v I \subset I$ for $v \in \mathcal{G}_{\Pi}$, if Λ is nondegen. i.e. $\Pi = \theta \wedge \Psi$ is not divisible by a 1-form other than θ .

1-st integral is replaced by (n-1)-form

Def 3 The space of conservation laws for EDS \mathcal{E}_{Λ} is $H^{n-1}(\Omega(M)/\mathcal{E}_{\Lambda})$.

A conservation law is an (n-1)-form which is closed on the integral manifolds. As before, we have an exact sequence

$$\cdots \to H^{n-1}_{dR}(M) \xrightarrow{i} H^{n-1}(\Omega(M)/\mathcal{E}_{\Lambda}) \xrightarrow{\delta} H^{n}(\mathcal{E}_{\Lambda}) \to \cdots$$

 $\operatorname{Im}\delta \cong H^{n-1}(\Omega(M)/\mathcal{E}_{\Lambda})/\operatorname{Im}(i)$ is called space of proper conservation laws.

The following is a version of Noether's Theorem.

Theorem 2. (B.G.G.) Let $(M, \mathcal{E}_{\Lambda})$ be an E-L system, where Λ is non-degenerate. Then there is an isomorphism

$$\eta: \mathcal{G}_{\Pi} \to H^n(\mathcal{E}_{\Lambda})$$

which is given by $v \to \eta(v) = [\iota_v \Pi]$ (interior product) and induces

 $\eta(\mathcal{G}_{[\Lambda]}) = \operatorname{Im}\delta$ (= space of proper conservation laws).

* * * * * * * * * *

For $v \in \mathcal{G}_{[\Lambda]}$, we have a conservation law $[\phi_v]$

$$\cdots \to H^{n-1}_{dR}(M) \xrightarrow{i} H^{n-1}(\Omega(M)/\mathcal{E}_{\Lambda}) \xrightarrow{\delta} H^{n}(\mathcal{E}_{\Lambda}) \to \cdots$$

$$[\phi_{v}] \to \eta(v)$$

$$\text{consv.law} \quad \text{prop.consv.law}$$

A local formula for representaive ϕ_v is described using the data:

- $\Pi = d(\Lambda \theta \wedge \beta)$, (P-C from)
- $v \in \mathcal{G}_{[\Lambda]}$ i.e. $\mathcal{L}_v \Lambda = d\gamma$, for some (n-1)-form $\gamma \pmod{\mathcal{I}}$.

Then
$$\phi_v = -\iota_v \Lambda + \theta(v)\beta + \gamma$$
 satisfies $\delta[\phi_v] = [d\phi_v] = \iota_v \eta$.

proof (1) $d\phi_v$ is calculated to be $\iota_v\Pi$, (mod \mathcal{I}). (a direct computation).

(2) By $\mathcal{L}_v\Pi = 0$, $d\iota_v\Pi + \iota_v d\pi = \iota_v\Pi$ is a closed *n*-form.

Thus, $d\phi_v - \iota_v \Pi \in \mathcal{I}$ and closed in $\bigwedge^n \mathcal{I}$.

But $H^n(\mathcal{I}) = 0$. Indeed, if $\psi = \theta \wedge \alpha + d\theta \wedge \beta$ is closed *n*-form in $\bigwedge^n \mathcal{I}$, $d\theta \wedge (\alpha + d\beta) = 0 \pmod{I}$.

The linear algebra mod θ implies $\alpha + d\beta = 0 \pmod{I}$. This shows

$$\psi = d(\theta \wedge \beta) + \theta \wedge (\alpha + d\beta) = d(\theta \wedge \beta)$$
 i.e. $[\psi] = 0$.

For some ε , $d\phi_v - \iota_v \Pi = d\varepsilon$ and $[d(\phi_v)] = \iota_v \eta$.

5 Example: Minimal surfaces

Our contact manifold is

$$M^{2n+1} = \{(x, H) | x \in \mathbb{E}^{n+1}, \ H \subset T_x \mathbb{E}^{n+1} : \text{ oriented hyperplane}\}$$

= $\{(x, e_0) | e_0 \perp H^n, \text{ unit tnagent vector}\}$

 $\pi: M^{2n+1} \to \mathbb{E}^{n+1}$: tangent *n*-plane bundle ($\cong G_n(T\mathbb{E}^{n+1}) \cong \mathbb{E}^{n+1} \times S^n$).

Given

$$N \hookrightarrow \mathbb{E}^{n+1}$$
: immersed hypersurface

its lift to M is a Legendre submanifold:

$$N \to M^{2n+1}$$
: $y \to (y, e_0(y))$, (Legendrian lift).

contact form on M^{2n+1}

At $(x, e_0) \in M$, the contact form θ is defined (as usual)

$$\theta_{(x,e_0)}(v) = \langle e_0 | T\pi_{(x,e_0)}(v) \rangle, \qquad v \in T_{(x,e_0)}M.$$

Using orthonormal frames (e_0, e_1, \ldots, e_n) and its dual coframe $(\omega^0, \omega^1, \ldots, \omega^n)$, we have $\theta = \omega^0$ and

$$d\theta = \sum_{i=1}^{n} \pi_i \wedge \omega^i, \quad \pi_i : 1-\text{form},$$
$$\theta \wedge (d\theta)^n \neq 0.$$

As a Langrangian n-form on M, we take

$$\Lambda = \omega^1 \wedge \cdots \wedge \omega^n.$$

This form at $(x, e_0) \in M$ is the volume form Ω of \mathbb{E}^{n+1} contracted by e_0 considered at (x, e_0) .

With these data, we have a fuctional on compact Legendrian submanifolds:

$$F_{\Lambda}(N) = \int_{N} \Lambda.$$

Since we have $d\omega^{i} = -\sum_{j=0}^{n} \omega_{j}^{i} \wedge \omega^{j}$ and $\pi_{i} = \omega_{i}^{0}$ $d\Lambda = -\pi_{1} \wedge \theta \wedge \omega^{2} \wedge \cdots \wedge \omega^{n} - \omega^{1} \wedge \pi_{2} \wedge \theta \wedge + \cdots$ $= \theta \wedge \left(\sum_{i=1}^{n} \pi_{i} \wedge \omega_{(i)}\right), \qquad \omega_{(i)} = (-1)^{i-1} \omega^{1} \wedge \cdots \wedge \hat{\omega^{i}} \wedge \cdots \wedge \omega^{n}$

This is the P-C form ($\theta \wedge \Pi = 0$) and $\Psi = \sum_{i=1}^{n} \pi_i \wedge \omega_{(i)}$:

$$\mathcal{E}_{\Lambda} = \{\theta, d\theta, \Psi = \sum_{i=1}^{n} \pi_i \wedge \omega_{(i)}\}.$$

On the extremal Legendrian submanifold $d\theta = \sum_{i=1}^{n} \pi_i \wedge \omega^i = 0$ and by a Cartan's lemma $\pi_i = \sum_{i=1}^{n} h_{ij}\omega^j$, $(h_{ij} = h_{ji})$. Also

$$0 = \Psi|_{N} = \sum_{i=1}^{n} \pi_{i} \wedge \omega_{(i)} = \sum_{i,j=1}^{n} h_{ij}\omega^{j} \wedge \omega_{(i)} = \left(\sum_{i=1}^{n} h_{ii}\right)\omega^{1} \wedge \cdots \wedge \omega^{n}.$$

Thus, N is minimal $\Leftrightarrow \sum_{i=1}^n h_{ii} = 0$. (h_{ij} the second fundamental form of N).

conservation law for translation

$$\phi_v = -\iota_v \Lambda + \theta(v)\beta + \gamma.$$

(a) v: a translation vector field on \mathbb{E}^{n+1} prolonged to M.

(b)
$$\mathcal{L}_v \Lambda = 0, (\Rightarrow \gamma = 0), d\Lambda = \Pi, (\Rightarrow \beta = 0).$$

Then conservation law for v is $\phi_v = \iota_v \Lambda$, $(\Lambda = \omega^1 \wedge \cdots \wedge \omega^n)$. Translation vector v is written on M is written as

$$v = A^0 e_0 + \dots + A^n e_n$$

where A^a is changes so that v is constant as the frame (e_0, e_1, \ldots, e_n) moves along the fiber.

At $(x, e_0) \in M$, $\iota_v \Lambda$ is

$$A^{1}\omega^{2}\wedge\cdots\wedge\omega^{n}-A^{2}\omega^{1}\wedge\hat{\omega}^{2}\wedge\cdots\wedge\omega^{n}+\cdots=\sum_{i=1}^{n}A^{i}\omega_{(i)}.$$

This form expressed as follows:

For $M \ni (x, e_0)$,

$$dx = e_0\omega^0 + \dots + e_n\omega^n \xrightarrow{proj.} e_1\omega^1 + \dots + e_n\omega^n$$

$$\xrightarrow{*} e_1\omega_{(1)} + \dots + e_n\omega_{(n)} \quad (*-operator w.r.t. \ \omega)$$

Then *dx is a vector valued (n-1)-form and

$$\langle v, *dx \rangle = \sum_{i=1}^{n} A^{i} \omega_{(i)} = \iota_{v} \Lambda.$$

Thus, essentially *dx is the conservation law. d*dx = 0 on a minimal hypersurface means coordinate functions are harmonic.

For n=2, especially, *dx=dy (locally) $\exists y:N\to\mathbb{E}^3$ and the map $x+iy:N\to\mathbb{C}^3$ satisfies Cauchy-Riemann eq.