The non-acyclic Reidemeister torsion for knots

Yoshikazu Yamaguchi

Geometry for Quantization 2007 at Waseda University 2007.9.6

- 1. Notations & Definitions
- 2. The non-acyclic R-torsion and the twisted Alexander invariant
- 3. Critical points of the non-acyclic R-torsion

1 Notations&Definitions

Twisted chain complex

 $K\subset S^3$: a knot, $E_K=S^3\setminus N(K)$: the knot exterior, $ho:\pi_1(E_K) o \mathrm{SU}(2)$ a homomorphism. Define

$$egin{aligned} C_*^
ho(E_K) \ &= C_*(\widetilde{E_K};\mathbb{Z}) \otimes_{\mathbb{Z}[\pi_1(E_K)]} \mathfrak{su}(2)_
ho \end{aligned}$$

Here

 E_K : the universal cover of E_K , $C_*(\widetilde{E_K};\mathbb{Z})$: the cell complex of $\widetilde{E_K}$, which consists of $\mathbb{Z}[\pi_1(E_K)]$ -modules, $\mathfrak{su}(2)_{
ho}$: $\mathbb{Z}[\pi_1(E_K)]$ -module via $Ad\circ
ho$

$$Ad \colon \mathrm{SU}(2) o \mathrm{Aut}(\mathfrak{su}(2)),$$
 $A \mapsto (v \mapsto AvA^{-1}),$

This is called "the $\mathfrak{su}(2)_{\rho}$ -twisted chain complex".

 $H^
ho_*(E_K)$ denotes the homology group.

- ullet $X(E_K)$: the $\mathrm{SU}(2)$ -character variety of $\pi_1(E_K)$.
- $ullet X(E_K) \simeq \ Hom(\pi_1(E_K), \mathrm{SU}(2))/conj$
- $egin{aligned} ullet H^
 ho_*(E_K) &\simeq H_*(\pi_1(E_K); \mathfrak{su}(2)_
 ho) \ & ext{Moreover} \ H^
 ho_1(E_K) &\simeq \ T^{zar}_{[
 ho]}(Hom(\pi_1(E_K), ext{SU}(2))/conj)^* \end{aligned}$

Regularity for representations

Roughly, with a notion of regularity there is a canonical way to choose bases for twisted homologies.

$$ho:\pi_1(E_K) o \mathrm{SU}(2)$$
 is regular if ho is irreducible and $\dim H_1^
ho(E_K)=1.$

For a regular representation ρ , we have

$$\dim H_1^
ho(E_K) = \dim H_2^
ho(E_K) = 1$$
 and

$$H_j^
ho(E_K)=0$$
 for all $j
eq 1,2.$

 λ : the preferred longitude of K.

(i.e.,
$$lk(K, \lambda) = 0$$
.)

A regular representation ρ is λ -regular (J. Porti 1997) if the inclusion $\iota\colon \lambda\hookrightarrow E_K$ induces a surjective map

$$egin{aligned} \iota_*\colon H_1^
ho(\lambda) &
ightarrow H_1^
ho(E_K) \ [\lambda\otimes P^
ho] &\mapsto \iota_*([\lambda\otimes P^
ho])
eq 0 \end{aligned}$$

where $P^{
ho}$ in $\mathfrak{su}(2)$ such that $Ad_{
ho(\lambda)}(P^{
ho})=P^{
ho}.$

The following fact is known:

For a λ -regular representation ρ ,

$$H_1^
ho(E_K)=\mathbb{R}[\lambda\otimes P^
ho]$$
 and $H_2^
ho(E_K)=\mathbb{R}[\partial E_K\otimes P^
ho]$

where $P^{
ho}$ is a vector in $\mathfrak{su}(2)$ such that $Ad_{
ho(\gamma)}(P^{
ho})=P^{
ho}$ for $orall \gamma \in \pi_1(\partial E_K).$

The non-acyclic R-torsion for $oldsymbol{K}$

We assume that

a representation ρ is λ -regular.

Let
$$d_i:C_i^
ho(E_K) o C_{i-1}^
ho(E_K)$$
 and

- $ullet \ B_{i-1} = \operatorname{Im}(d_i)$,
- $ullet Z_i = \ker(d_i),$

- $oldsymbol{f b}^i\subset C_i^
 ho(E_K)$: vectors such that $d_i(f b^i)$ is a basis of B_{i-1} ,
- \mathbf{h}^i : the following basis of $H^{
 ho}_i$ $\mathbf{h}^1=[\lambda\otimes P^{
 ho}], \quad \mathbf{h}^2=[\partial E_K\otimes P^{
 ho}]$ and $\mathbf{h}^i=\emptyset$ for $i\neq 1,2$ and
- ullet $\widetilde{\mathbf{h}}^{i}$: a lift of \mathbf{h}^{i} in Z_{i} .

Then

$$C_i^{
ho}(E_K) = Z_i \oplus \widetilde{B}_i$$

$$= d_{i+1}(\widetilde{B}_{i+1}) \oplus \widetilde{H}_i^{
ho} \oplus \widetilde{B}_i$$

where

$$\widetilde{B}_i$$
 is a lift of B_{i-1} , i.e., $d_i(\widetilde{B}_i) = B_{i-1}$.

Then the non-acyclic R-torsion $\mathbb{T}_{\lambda}^{K}(\rho)$ for K and ρ is defined by the following alternative product of the determinants of base change matrices

$$egin{aligned} \mathbb{T}_{m{\lambda}}^K(
ho) \ &= arepsilon \cdot \prod_{i=0}^n [d_{i+1}(\mathbf{b}^{i+1})\widetilde{\mathbf{h}}^i \mathbf{b}^i / \mathbf{c}_{\mathcal{B}}^i]^{(-1)^{i+1}} \end{aligned}$$

where

- [b/a]: the det of the base change matrix from a to b,
- ullet ${f c}^i_{\cal B}$: a basis of $C^
 ho_i(E_K)$ given by i-dimensional cells of E_K and a basis ${\cal B}$ of ${rak su}(2)$,
- ullet arepsilon : a sign defined by an orientation of $H_*(E_K;\mathbb{R}).$

\mathbb{T}_{λ}^{K} and the twisted Alexander invariant

There exists a relation between $\mathbb{T}_{\lambda}^{K}(\rho)$ and the twisted Alexander invariant $\Delta_{K,Ad \circ \rho}$.

Proposition 1. If ρ is λ -regular, then the twisted Alexander invariant $\Delta_{K,Ad\circ\rho}(t)$ can be defined.

Theorem 2. If ρ is λ -regular, then

$$\mathbb{T}_{\lambda}^{K}(
ho) = -arepsilon \left. rac{d}{dt} \Delta_{K,Ad\circ
ho}(t)
ight|_{t=1}.$$

Review of $\Delta_{K,Ad \circ ho}(t)$

$$\pi_1(E_K) = \langle x_1, \dots, x_k \mid r_1, \dots, r_{k-1} \rangle$$

: Wirtinger presentation

$$lpha:\pi_1(E_K) o H_1(E_K;\mathbb{Z})\simeq \mathbb{Z}=\langle t
angle$$
 $\mu\mapsto t$

is an abelianization homomorphism where μ is a meridian and $\langle t \rangle$ is a multiplicative group .

We choose a basis of $\mathfrak{su}(2)$, for example

$$\mathbf{i} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \mathbf{j} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \mathbf{k} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

Let

$$egin{aligned} \Phi: \mathbb{Z}[\pi_1(E_K)] &
ightarrow M_3(\mathbb{C}[t,t^{-1}]) \ &\sum_i a_i \cdot \gamma_i \mapsto \sum_i a_i \cdot Ad_{
ho(\gamma_i)} lpha(\gamma_i) \end{aligned}$$

where a_i is an integer and $Ad_{\rho(\gamma_i)}$ is a matrix w.r.t the basis i, j, k.

 $A^j_{K,Ad\circ
ho}$: the matrix by deleting the j-th 3 rows from 3k imes 3(k-1)-matrix

$$\Phi\left(rac{\partial r_i}{\partial x_j}
ight)_{1\leq i\leq k-1, 1\leq j\leq k}$$
 .

(these differentials are Fox differentials)

If $\exists j$ s.t. $\det(A^j_{K,Ad\circ\rho}) \neq 0$, then the twisted Alexander invariant $\Delta_{K,Ad\circ\rho}(t)$ is defined by

$$\Delta_{K,Ad\circ
ho}(t) = rac{\det(A^j_{K,Ad\circ
ho})}{\det(\Phi(x_j-1))}.$$

Example

 \boldsymbol{K} :figure eight knot

$$\pi_1(E_K) = \langle x,y \, | \, wx = yw
angle$$

where $w = [x^{-1}, y]$.

By Riley's method,

$$ho:\pi_1(E_K) o \mathrm{SU}(2) \ x\mapsto egin{pmatrix} \sqrt{s} & rac{1}{\sqrt{s}} \ 0 & rac{1}{\sqrt{s}} \end{pmatrix} \ y\mapsto egin{pmatrix} \sqrt{s} & 0 \ -u\sqrt{s} & rac{1}{\sqrt{s}} \end{pmatrix}$$

(s,u) satisfy that

$$u^2 + \left(3 - \left(s + \frac{1}{s}\right)\right)(u+1) = 0$$

Then

$$egin{aligned} \Delta_{K,Ad\circ
ho}(t) \ &= rac{\det\Phi(rac{\partial}{\partial x}wxw^{-1}y^{-1})}{\det\Phi(y-1)} \end{aligned}$$

$$\left. rac{d}{dt} \Delta_{K,Ad \circ
ho}(t)
ight|_{t=1}$$
 is given by

$$egin{aligned} & rac{1}{s^2} \left(-1 + 2\,u + u^2 +
ight. \\ & s^4 \, \left(-1 + 2\,u + u^2
ight) - \ & s \, \left(-3 + 6\,u + 6\,u^2 + 2\,u^3
ight) - \ & s^3 \, \left(-3 + 6\,u + 6\,u^2 + 2\,u^3
ight) + \ & s^2 \, \left(-7 + 4\,u + 7\,u^2 + 4\,u^3 + u^4
ight)
ight), \end{aligned}$$

the denominator of $\frac{d}{dt}\Delta_{K,Ad\circ\rho}(t)\big|_{t=1}$ is given by $-(s+\frac{1}{s}-2).$

Finally, we have

$$\mathbb{T}_{\lambda}^{K}(
ho) = -arepsilon \cdot \left(2\left(s + rac{1}{s}
ight) - 1
ight)$$

by using the equation

$$u^2 - (3 - (s + \frac{1}{s}))(u + 1) = 0.$$

Since $\operatorname{tr} \rho(\mu) = \sqrt{s} + \frac{1}{\sqrt{s}}$, we can also express

$$\mathbb{T}_{\lambda}^{K}(
ho) = -arepsilon \cdot \left(2 \mathrm{tr}^{\,2}
ho(\mu) - 5
ight).$$

Fact

K: figure eight knot $\operatorname{tr} \rho(\mu)$ gives a local parameter on the $\operatorname{SU}(2)$ -character variety.

Therefore

$$\mathbb{T}_{\lambda}^K(
ho)=-arepsilon\cdot \left(2(\operatorname{tr}
ho(\mu))^2-5
ight)$$
 has critical points at $\operatorname{tr}
ho(\mu)=0$.

3 Critical points of \mathbb{T}_{λ}^{K}

Binary dihedral representations

An SU(2)-representation ρ is a binary dihedral representation if

$$ho(x_j) = \left(\cos heta_j + \sin heta_j \left(egin{smallmatrix} i & 0 \ 0 & -i \end{smallmatrix}
ight) \left(egin{smallmatrix} 0 & 1 \ -1 & 0 \end{smallmatrix}
ight)$$

for generators of Wirtinger presentation

$$\pi_1(E_K) = \langle x_1, \dots, x_k \mid r_1, \dots, r_{k-1} \rangle$$

The non-acyclic R-torsion $\mathbb{T}_{\lambda}^{K}(\rho)$ does not change by taking conjugation of ρ .

We can regard \mathbb{T}_{λ}^{K} as a function on the SU(2)-character variety of a knot group $\pi_{1}(E_{K})$.

Hereafter, K is a two-bridge knot in S^3 .

Figure 1: Two bridge knot

Figure 2: Deformation of figure eight knot

Proposition 3. If the λ -regular component of the $\mathrm{SU}(2)$ -character variety of K contains the characters of binary dihedral representations, then \mathbb{T}^K_λ has a critical point at the character of each binary dihedral representation.

Lemma 4. K is a two-bridge knot. Every non-abelian SU(2)-representation ρ such that $\operatorname{tr} \rho(\mu) = 0$ is conjugate to a binary dihedral representation.

For the character χ_{ρ} of each binary dihedral representation ρ such that

$$\chi_{
ho} \in \exists U_{
ho} \simeq (0,1)$$
 diffeo

and $I_{\mu}:U_{
ho}\ni\chi_{ au}\mapsto\operatorname{tr} au(\mu)\in\mathbb{R}$ gives a local parameter.

This Lemma follows from the results of

G. Burde,

"SU(2)-representation spaces for two-bridged knot groups"

and

M. Heusener and E. Klassen, "Deformations of dihedral representations".

Proof of Proposition. On $U_{
ho}$, a local parameter $I_{\mu}(\chi_{ au})$ is expressed as $2\cos\theta$. By the relation between $\mathbb{T}^K_{\lambda}(au)$ and $\Delta_{K,Ad\circ au}(t)$,

$$\mathbb{T}_{\lambda}^K(au) = rac{f(\cos 2 heta)}{2\cos 2 heta - 2}$$

where f is a smooth function of $\cos 2\theta$. Moreover

$$\operatorname{tr}
ho(\mu)=0\Rightarrowrac{d}{d heta}\mathbb{T}_{\lambda}^{K}=0.$$