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0. Introduction

In this paper we study the null space of the massless Dirac opertor on a hemi-
sphere of S* with boundary condition given on the equator ~ § 3, The boundary
conditions we consider are nonlocal ones that are realized by the infinite dimensional
Grassmannian associated to the Dirac operator on the equator, called Hamiltonian.
We shall introduce in section 6 the infinite dimensional Grassmannian Gr(H) of
the Hilbert space H of square integrable even spinors on 83, H is polarized by the
spaces of eigenvectors Hy for positive (resp. negative) eigenvalues of the chirality
preserving Dirac operator (Hamiltonian) on S3. Gr(H) is defined by this polar-
ization. Let Dy . be the Dirac operator acting on even spinors on a hemisphere
whose boundary values on the equator are in a given W € Gr(H). We shall show
in Theorem 6.4 that

(0-1) index Dy = virtual dim W.

In particular, for W = H_ both sides are 0; W = H_ corresponds to the so-
called Atiyah-Patodi-Singer boundary condition [A-P-S, B-W 1]. This type of index
formula for a general manifold with boundary was discussed in [Wo, B-W 1, B-W 2].
In [Wi] Witten gave a brief discussion on the infinite dimensional Grassmannian
on S! as nonlocal boundary conditions of the d-operator on the disc. Recall that
on C' C S2 the Dirac operator is reduced to the d-operator and the Hamiltonian
on the equator St is Z%' The Hilbert space H on the equator is polarized by Hy =
{e™®; n > 1} and H_ = {e~*%; n > 0}. Now H (resp. H-) is the set of boundary
values of holomorphic functions on the disc (resp. outside of the disc). In the same
fashion we shall investigate the problem of extending the spinors on the equator S 3
to zero mode spinors on each hemisphere. Let Hy be as mentioned earlier the space
of the eigenvectors of Hamiltonian on B = {z € C?; |z| = 1} ~ §? that correspond
to the positive (resp. negative) eigenvalues. Then in Theorem 5.10 we show that
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H is the space of the boundary traces of zero mode spinors of even chirality on the
north hemisphere and H_ is the space of those spinors on the south hemisphere.
The corresponding assertion for the boundary traces of zero mode spinors of odd
chirality on both hemispheres are also discussed. By virtue of Theorem 5.10 the
proof of index formula (0-1) reduces to a problem on linear algebra. This extension
property is not valid in general, [B-W 1, §14], nor the validity of (0-1) on a general
manifold with boundary. Now we shall give an overview of the sections.

In section 2 we introduce basic ingredients on our membrane M. A mem-
brane M is a smooth manifold homeomorphic to S* obtained by patching Ci and
6‘3) together by the transition function w = v(z) = —lziz. In section 3 formulas
familiar in Riemannian geometry are described in their concrete and explicitly ex-
pressed forms. The Levi-Civita connection on M is given by the gauge potentials
i—_lk—zli;—za(z)‘l(dcr) z, here o = |z|?v,, on each hemisphere. The explicit coordinate
representation of the connection enables us to obtain the spinor representation of
Levi-Civita connection lifted to the Spin bundle of M. A new aspect on the Levi-
Civita connection on B =~ S that relates to the C-R (Cauchy-Riemann) structure
on B is proposed.

In section 4 we shall first give a coordinate representation of the Dirac operator
on M, which is useful for the later calculations. On the equator B there exists a
chirality preserving Dirac operator (Hamiltonian) P. Let D be the Dirac operator
on M restricted to act on the space of even spinors St ; D = D|S*, and let P
act on ST|B. Then we have the decomposition of D to the radial part and the
longitudinal part; D = ~4(n — P). Correspondingly on the spinors of odd chirality
we have D! = (n + P)v,. P has a simple expression in terms of the C.R. basis on
B, (4-3-2).

In section 5 we shall calculate the eigenvalues of P and obtain a complete
orthogonal system of eigenvectors in explicit forms.

THEOREM 5.3. The eigenvalues of P are

3
:{:<§+'r> ;o r=0,1,2,--+

with multiplicity (r 4 1)(r + 2), in particular, there is no zero mode spinor of P and
the spectrum is symmetric relative to 0.

The same problem but for another metric on S* was studied in [Hi, Sch] and
the author was guided by [Hi, Gol, Sch], though the author’s method provides a
new way of finding systematically the eigenvectors of Hamiltonian, (section 5.1). In
5.2 we discuss the extension problem of spinors that we mentioned above:

THeOREM 5.10. The boundary trace b gives the following isomorphisms

C{ee H'({|2| <1},587): Dp=00n |z < 1} %H_}.HH%(B,S“*)
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{¢ e H'({lw| <1},5%): Dp=0on fw| <1} > H_N H#(B,St).

The procedure is analogous to the construction of solutions to Laplace equa-
tion in R® by the method of separation of variables from eigenvectors of Laplace-
Beltrami operator on $? and a radial differential operator.

Subsection 6.1 is devoted to the discussion on the infinite dimensional Grass-
mannian Gr(H). We shall discuss in the rest the index of Dirac operator D on the
hemisphere with boundary condition. For a W € Gr(H), the operator D has the
closed extension Dy .. with the domain of definition consisting of those spinors on
the unit ball whose boundary values lie in W. To have the realization Dy . and to
show that its adjoint is equal to D;ﬂv we shall give in Proposition 6.2 the explicit
description of a bounded inverse for Dy, .. Here we use the canonical basis of W.
Proposition 6.2 and Theorem 5.10 are the keys in our discussion. Then we prove
the index theorem (0-1). The general A-P-S boundary value problem can be for-
mulated equally well on a general manifold with boundary. But we lack necessary
analysis for the general case where the metric is not cylindrical near the boundary;
for example, we don’t know if the adjoint operator of Dy is DJ{V, NOr can we ex-
pect the counterpart of our extension properties. Recently Grubb [Gr] and Gilkey
[Gil-2] extended the index formula for the boundary condition of Atiyah-Patodi-
Singer type (W = H_) to the case where the structures near the boundary are not
product. We note also that the general results of [Se, B-W 1] use the Grassmannian
of pseudo-differential projections with the same symbol. In their cases the result
corresponding to Proposition 6.2 is assured by the theory of pseudo differential
operator. Our proofs are performed by direct calculations on the membrane.

The index theorem of Dirac operator coupled to a gauge potential was investi-
gated in [A-S, S-2]. In 6.3 we shall discuss briefly that the index theorem of coupled
Dirac operator is in some sense subordinate to our index theorem with Grassman-
nian boundary condition. In fact a su(IN)—gauge potential defines a Grassmannian
element W4 € Gr(H"), and then we can show that the index of Dirac operator
coupled by A is equal to the virtual dim Wy.

I thank Professor B. Booss of Roskilde University for his continuous encour-
agement. He sent me the draft [B-W 1] before its publication that helped me under-
stand where difficult points are for the general case. Also Professor Booss brought
the paper [Sch) to my notice after the first draft of this paper was written in 1990,
and by virtue of this I was able to find a mistake in the calculations in 5.1. I thank
also Professor K. Furutani of Tokyo Sciences University for his criticism on section
6 of earlier versions; Proposition 6.2 and Proposition 6.3 are added to reply to his
objections.

1. Clifford algebra on a complex vector space and subalgebras

As for the facts about Clifford algebra the reader can refer to several good
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expositions [A-B-Sh, Gil, L-M]. Here we exhibit some formulas that will be cited in
this paper emphasizing the manner of reduction to subspaces.

1.1. Let V be a 2n-dimensional real vector space endowed with the canonical
symmetric bilinear form (, ). Let J be a complex structure on V; J? = —1. J is
extended to the complexification V. There is a real basis {e;}2?, of V' such that
Je; = eny;. This gives also the complex basis of V¢. We prefer the basis of V¢ given
by f; = 3(e; — vV=Tenys), £ = 5(e; +v/—Teyq). The real vectors have the form
Y. aifi +a:f; with a; € C. The Clifford algebra C (V) of the complex vector space
(V¢, < >) is the algebra over C containing the identity 1 and generated by the
vectors f;, f; with the relations :

fzf]-f-fjf,:f;f;—}-f;fzzo, fzf;—{-f;fl:&]

Let G° be the Lie subgroup of GL(2n,C) of those linear transformations on
V¢ that preserve the bilinear form invariant. G° is isomorphic to O(2n,C). The
subspace G spanned by f;f;, £;f;, fif;, £f;, fifz, 1 < 7, is a Lie subalgebra of C(V¢).
If we associate to X € G° the linear map

(1-1-1) AMX)rv— Xv—0vX  veVe

then A defines a representation of G° on V. We shall identify G¢ and A\G¢. G€ is
isomorphic to o(2n, C). There are some canonical morphisms on C(V¢).

(1) The canonical automorphism of C(V¢) is defined as the extension of the
linear map o : V¢ — C(V*®), given by az = —z. _

(2) The bar operation is the unique antiautomorphism characterlized by
(z®c)=ca(z)®cforzeV,ceC.

The real Clifford algebra C(V') of (V, (, )) is the subalgebra of those elements
of C(V*°) that change the sign under the bar operation:

. -a+ ~1 deggo—1t a:0
(1-1-2)  C(V) = {g € c(ve); ?or ea(ch Blomogeneg)us component g, of g} ‘
The real objects are described in this manner.

Let G be the subgroup of G* of those matrices that preserve V. G is isomorphic
to O(2n). The Lie algebra G of G is given by G = {X € g% XV cV}. ¢ =¢g°n
C(V) and G is isomorphic to o(2n). We shall fix the notations G and G throughout
this paper.

1.2. For a vector z € V let V, be the subspace of V that is perpendicular
toz:V,={veV;<v,z>=0} Weput G, = {A € G; AV, C V,}. G, is a
Lie subgroup of G isomorphic to O(2n — 1). The Lie algebra of G, is G, = {X ¢
G, Xz = 0}. G, is isomorphic to o(2n — 1).
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The Clifford algebra C(V,) of (V,,< >) considered as a subalgebra of C(V)
is also written as

gaz + (—1)%B9"1zg, =0
1-2-1 C(Vg) = V); .
( ) (V) {g €Cv) for each homogeneous component g, of g
We have
(1-2-2) G, =GNC(V,) G, =6NC(V,).

1.3. The universal covering group Pin(2n) of G can be realized as a sub-
group of invertible elements of C(V'). Corresponding to the Z;-graduation of C(V'),
Pin(2n) is decomposed to Pin®(2n) @ Pin'(2n). Pin®(2n) = Spin(2n) is the uni-
versal covering group of SG = {g € G : detg = 1}. Similarly Spin(2n — 1) is the
universal covering group of SG, = {g € G, : det g = 1} and we have the relation:

(1-3-1) Spin(2n — 1) = Spin(2n) N C(V,) = {g € Spin(2n) : gz = zg}.

Obviously |~i—|z € Pin'(2n). This fact is often used in this paper. Clifford algebra

C(V*®) decomposes as a direct sum of left Spin(2n) modules in the form: C(V°) =
2"A. A decomposes as the direct sum of two irreducible representations A% of
dimension 27~!. We have homomorphisms: V ® A* — AT, which come from
Clifford multiplication on the left. Spin(2n — 1) is a subgroup of Spin(2n) and
acting on A commutes with the multiplication by |z|~!z. Hence |z| 'z : AT — A~
defines an isomorphism of representation spaces of Spin(2n — 1). AT (resp.A™) is
thus an irreducible representation space of Spin(2n — 1).

ExaMmpLe. We shall write explicit formulas for the case n = 2 because we use
it in the future. The Chevalley basis of G are

H = —1(f1fT - f§f2), H = vV —1(f1fT — f2f§)
(1-3—2) A=y —1(f1f2 - f'l‘f'z'), B = \/——1(f1f2 -+ foQ')

C=+ —1(f1f§—f‘ff2), D= \/—1(f1f§+fff2).
G 18 reduced to Gy + G. Gy is generated by H, A and B, and G5 is generated by
H’, C and D. Each of them is isomorphic to o(3). Let

w = f1f2
(1-3-3) At = Cw + Cfyfsw
AT = Chw + Cfzw.

A = At @ A~ is the simultaneous eigenspace for the actions of v/—lejes =

(flfT — f7f1) and /—1leseqs = (fofy — f5f,) of eigenvalue +1. We have the following
irreducible representation of G:

(1-3-4) AY(H) =+/~loz AT(A)=01 AT(B)=o03,
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where o’s are Pauli’s matrices
0 -1 0 -1 -1 0
"1‘“1<—1 0) ”2‘<1 0) “3‘”1<o 1)‘

2. Structures on a membrane

2.1. Let ﬁ"(C) be the dual projective space of P™(C), the homogeneous co-
ordinates of P"(C) are denoted as [t,, - - ,t,] and those of P"(C) are [ug, -, Up).
We consider the following double fibering:

A= {([to,--- vt [toy -+ Un]) € PHC) x PM(C) 1 t-u= thuj :0},

j=0

with the projections on each factor 7 : A — P*(C), #: A — P"(C). We set
Ug = P*(C) — {to = 0} and Uy = P™(C) — {uo = 0}. For a neighborhood V' of 0 in
Uy = C™, we define the dual V of V by

V =#(x"1(P™(C) - V).

For example, the dual domain of 0 € C™ is Uy = #(n~}(P™(C) — [1,0,---,0])),
which we shall denote by C™. The inhomogeneous coordinates on Uy = C™ are

written as (21, -+ ,2,), 2 = %,i=1,--. ,n. We put

to
R={zeC™%|z| <1}, B={2e€C%|z]=1}.

Let R be the dual domain of R. If we denote the dual inhomogeneous coordinate on
U, 2 C" by (w1, ,wy), w; = st =1, ,n,weflnd R={we C*|uw| <1}.
We put B = {w € C™;|w| = 1}.

RemMark. If V is a strictly convex set with smooth boundary then the space
of continuous functions on V that are holomorphic on V and that on V are in
duality, [K-1]. We shall prove in Theorem 5.12 the analogous duality between the
null space of the Dirac operator on R and that on }fi; this was one of our motivations.
To extend our results in Theorems 5.10 and 5.12 to the case of the pair of convex
sets V and V will be interesting.

There is a smooth bijection v : C™\ {0} — C™ \ {0} given by

) .z
(2-1-1) w=uv(z)= L

z — (2,v(z)) is a section of the projection 7 over C™ — {0}. We patch up C"

and C" together by v to obtain a differentiable manifold

(2-1-2) M=c| | c
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We call M membrane (associated to the complex structure in consideration).
M is a manifold homeomorphic to S%*. We shall regard C™ and C™ as subsets of
M.

We take { 8‘2 , 3‘2 yi=1, n} for the local basis of T¢ C™. We use the similar
notations on C™; {52 By aw ,i=1,---,n}. The real tangent vectors are denoted as
S (il 5o T Ui a*-) u € C™, and the same description on C™. The tangent bundle
TM +— M is obtained by patching up these vectors by the transition function v,.
The matrix representation of the differential v, : T7¢(C™ — {0}) — TC(C™ — {0})

of transition function v is given by

— ZiZj __57:' ZiZj
(2-1-3) (0,), = 2D _ L < T?P*zﬁj ( azj;jmﬂ) ‘
(=65 + Tz—lf) P

This is the composition of matrices of dilation, inversion and the reflection with

respect to the plane perpendicular to the radial vector

2.2. We shall endow M with a conformally flat metric.
Lemma 2.1, Let z € C" — {0} and w = v(z) € C* — {0}. We have:

) (ve)’ = (Ua)s

(2) (1+ |w|2)_22dwi®dmi =(1+ |z|2)*22dzi®dzi.

i=1 t=1

Lemma 2.1 enables us to define a metric on M by the formula:

_ { 1+22) 22, dzi®dz; onC?

(2-2-1) . ~
(1+|w]?)"2 3%, dw; @ dw; on C™.

g is a G-invariant metric.

Put
oy 0 .
81':( =(1+|Z‘)_ 'L=l,-~,n,onC’“,
(2-2-2) ) 8
5, — 2 i =1 ... C
0; = (14 |w] )Bw-’ (1+Iw|)8 i=1,---,n, on C™.

2

(8;,8;) are skew g-orthonormal and (8;(z), 6;(2)) = (Bi(w), &{(w))o(z) for w =
v(z), where

(2-2-3) o(2) = |2|* (V)2

The principal G-frame bundle with respect to the frame (0;, ;) is defined by the
transition function o, which we shall denote by F(M).
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Let Gar = F(M) % 44 G be the adjoint bundle to the principal G-bundle F(M)
with the fiber the Lie algebra G, where the fiber product is taken with respect to
the adjoint action of G on G.

2.3. The Clifford bundle C(T'M) is the subbundle of C(T°M) with the
fiber at z generated by TM, C T°M,. Equivalently, C(TM ) is the subbundle of
C (TCM' ) consisting of those elements that change the sign under the bar operation
as in (1-1-2).

The bundles Gy = F(M) xaq G, Pin(M) = Pin(TM) and Spin(M) =
Spin(TM) are contained in C(T'M). Let o denote the Clifford multiplication of
the radial vector n = I_iT >_(20; +%;05) € Pin' (2n). Then the principal Spin(2n)-
bundle Spin(M) — M is isomorphic to the bundle obtained by the identification

-~ C™ x Pin®(2n) 3 (2,9)

( ) — (w=0(z), § =79 = —Jog) € C™ x Pin*(2n).

The transition function of Spin{M) descends to that of F(M) by the bundle
homomorphism p that comes from the homomorphism p : Pin(2n) — O(2n),
p(—=%0) = vi. Let A and AT be the representations of Spin(2n) described in 1.3.
We can form the spinor bundle S = Spin(M) x gpm(an A. The even and odd half
spinor bundles S* are described as follows: the transition function of S* is given by
A(—7g) on C™ N 6’”, hence the representation space A% changes each other on C™
and on C™. Thus an even spinor ¢ € S*, for example, is a pair of p € £2(C™ x AT)
and ¢ € £%(C™ x A~) such that

(2-3-2) ¢ = A(-70)P.

Here P represents the complex conjugate, not the bar operation in C(T'M). The
convention of taking the complex conjugate will be needed when we deal with the
Dirac operator in section 4 and in accordance with the notion of “changing the
charge” in physics. A spinor is said to have even (resp. odd) chirality if it is a
section of the even (resp.odd) half spinor bundle S* (resp. S~).

It is convenient for a later use to have the matrix form of A(yy). We restrict
ourselves to the case n = 2, then, with respect to the basis {w, 05w, Gyw, O5w }
of A, (1-2-3), A(7o) has the following matrix representation

¥4 zZ
0 1 2

1 —Z9 21
. 3- A — _
(2 3 3) (70) |zl Z1 —29 0

Z2 z1

2.4. In this section we restrict ourselves to the case n = 2. The general case
is also treated by the same principle. The tangent bundle of B is

o= () s <(()onms)
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where n is the radial vector field. The Clifford bundle C(T'B) is the subbundle :

gam + (~1)%€%~ng, = 0
for each homogeneous component g, of g ‘

C(TB) = {g € C(TM)|B

See (1-2-1).

The frame bundle F(B) is the subbundle of F(M) with the fiber reduced to
F(B), = Gy & O(3), where G, = {4 € G : An = *n} as is noted in 1.2. Similarly
the principal Spin(3)-bundle Spin(B) is given by

(2-4-1) Spin(B) = {g € Spin(M) : g(z)n = ng(z) at z € B},

see (1-3-1). We have Spin(B) = F(B) Xo(s) Spin(3).

Spin(3) has the representation space A* (subsection 1.3), and yo|A4 : Ay —
A~ defines an isomorphism between the representations. The even and odd spinor
bundles Sg on B are obtained by the patching (2-3-2) restricted on B.

2.5. We keep the assumption n = 2. We shall consider the following vector
fields n, 6o, €, € on M — {0,0} = C* N C*:

n= %(y +7)
(2-5-1) 1
Oo= ——=(v —7)
2v/~1
where

L (2101 + 220;) on c? - {0}

|2|

—ﬁ(wlél + w2(§2) on C2 — {@}

_IH
R’

e(Z1 85) on C* - {0}
—ﬁ(m&l w28-2-) on C2 — {0}

z|( 22(91 + 2182) on C2 - {0}
A (—wpdy + wi85) on C? — {0}

[wl

(—2085 + 2185) on C* — {0}
(*?1)281 + w182) on 6'2 = {6} '

£ £|~

|
and {
|
k

n is the radial vector field (2-3-3) and 6p, €, € are longitudinal vector fields, that
is, they are tangent to |z| = constant sphere. Put

(2-5-2) 0,

(e+79), b =

NJH—A
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With respect to the metric g induced on B the vector fields v/265, v/26;, V265
form an orthonormal frame of T'B.
The dual differential forms n*, 83, €*, € on M —{0, 0} are described as follows:

n* = (v* +7%)

(#59) 65 = V=10 — %),
where
w={<u+mmm*am@+@wa<mc%%m
—((1 + [wl?)|wl) Y (@1 dw; + Wadws) on C* — {0}
g:{m+mmm*@armaucm@-m}
((1+ [w]?)|w])~! (@1 dB, — Wadwy) on C? — {0}.
Put
(2-5-4) 07 =€+ 05 =+/-1(c" —¥).

These are dual differential forms of ; and 8 respectively. Aside from the above
vector fields v,7,¢,€ and their dual forms we shall use another quartet of vector
fields that play a complementary role in the sequel. We shall describe these vector
fields in the following:

b= %(2282 +7%185) on C*—{0}

6= I—zl—l(zza'l‘ - 2,'182) on C2 — {0}

The formulas on C? — {0} are omitted.
Put
1 = 1
== g -
n=g0rh m=

The vector fields \/57'0, \/57'1, V271, form another orthonormal frame of T'B.
For instance the Laplace-Beltrami operator A; on B is given by

(2-5-5) 0 §—19).

1 _
= ﬁ(ﬂ—#),

A=3(n+n)?+ 4,

2-5-6
. Ba= @B+ 6346 = (477 4 7D)

where A is the Laplace operator with respect to the metric g.
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REMARK. Spin(3) ~ SU(2,C) acts on B =~ S° naturally. Let Ry (resp. L)
be the induced action on the continuous functions on B: Ryf(z) = f(z - g) (vesp.
Lof(z) = f(g7* - z) ). Then the differential representations of Ry (resp. Lg) are
given by

dR(o3) =6y resp. dL(o3) = To
(2-5-7) dR(o3) =61 resp. dL(o2) =T
dR(O'l) = 02 resp. dL(O’]_) = Tg,

0;'s being Pauli’s matrix. Let C be the Casimir operator. Then

(2-5-8) dR(C) = dL(C) = Ar.

3. Levi-Civita connections on M and B

3.1. The Levi-Civita connection of the metric g is the torsion free connection
on the principal frame bundle F(M) that is compatible with g. We shall describe
it by a gauge potential defined by the transition function ¢ of F(M), (2-2-3).

We consider the G¢—valued 1 form o(z)~'(do),. Applying the bar operation
on o—Ldo, we find (0(z)~1{do),) = —(o(2)~(do).), therefore c~*do is a G-valued
1-form, see (1-1-2) and the discussion that follows it.

LemMma 3.1
a(w)‘l(da)w = G’(Z)(dd_l)z,

for w=v(z) € C", 2 € C™

We define a G-valued 1 form (gauge potential) on each local coordinate as
follows: '

|2* -1
I'(z)= TR o(2)7t (do), forzeC™"
(3-1-1) i 1 Twllzlz

——— o(w)"t (do)y forwe cr.

Then we have a connection form on F(M) defined by

o FUDE)s + I TETEE) for f € FODIC
Frw)(f)e + FH @)@ fw)  for fe FONIC™

In fact, from Lemma 3.1 we have, for z € C" and w = v(z) € cr,

|w]?

(6To™  +0-do~")(z) = o(z)(do™ 1), = (W)~ (do )y = T'(w),

1
P e (F
(1412 14 |w]?
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and the connection form v on F(M) is well defined. v is nothing but the Levi-
Civita connection for the metric g. The connection « lifts to define a connection on
Spin(M), and by the representation A of Spin(2n) it induces the connection A(y)
on the spinor bundle S.

The explicit representation of the connection I'(z) as a G-valued differential
form is obtained by a direct calculation from the matrix representation of o(z2),
(2-2-3) and (2-1-3). If we write it using the representation A of (1-1-1) it becomes

- 1 - =
o(z)"Hdo), = W(Z(%d% —Z:d2;)0:0;
(3—1-2) + Z(Zidij - Ejdzi)&@; + (zzdz] — zjdzi)c’?i@j
i<g

+ (Eidfj - Ejdz)&laj— + (Eldz] - z]dzl)B;aj)

Note that G is generated by 8,8, 8;9;, 9,95, 8;0;, 8;85, i < j.
CororLaRry. The curvature of v is given on C™ by

_ 2
(L2
(3-1-3) + Z dz; N dZ; 8153‘ + Z dz; A dz; 050;
i<y i<
+ 3 dsi A dz 8:0;+ Y d7 A dz; 0,05

1<j 1<j

Q@) {Z dz; A dZ; 0;0:

and the same formula on cr.

Q(v) is a G-valued 2-form: Q(y) € £2(Gpr). Now we suppose n = 2. Then
we have the following matrix representation of A(y) relative to spinor basis. An
analogous formula is also valid for general n.

LeMMA 3.2. (1) With respect to the basis {w = 0,182, 0105w } of AT, AT(¥)
has the following matriz representation

A¥( )_|i|(\/—103 —2¢* )
VERN e —yaes)
(2) With respect to the basis { Orw, Osw } of A~

(\/fifg ~26* )

~(qy = 2
AU e

2
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Proor. Rewrite (3-1-2) with respect to the Chevalley basis of G, (1-3-2), it
turns out that I'(z) has the form:

I(z) = % (O H — 72 H — 03A+73C+6;B—1iD).

The representation follows from (1-3-4).

3.2. As in section 2.4 we assume n = 2. The Levi-Civita connection on B is
the connection form on the O(3)-principal frame bundle F'(B) that is torsion free
and compatible with the metric g. It lifts to define a connection on Spin(B). Here
we shall give directly the Levi-Civita connection form on Spin(B).

LemMA 3.3.  As relations on differential forms on B we have:

6 = 20° AOL, dOT =205 A O3, dby = 205 A6}

Proor. Use the following fact:
n* Ay =n*Af] =n*Af;=0 onB.

Th fiber at each z € B of the bundle Gp is by definition G, = Lie(G,) and
we have G, = {X € G : Xz = 0}. Recall that Gp acts on T'B by the expression A of
(1-1-1). Gp becomes a subbundle of Gy;.

ProposiTion 3.4. (1) Gp has the following frame
i=610,, j=0200, k=06
(2) These are the canonical basis of Gp with the relations
L,jl=2k, [kl=2, [k,i=2j

Hence Gp is the adjoint bundle F(B) X 44 0(3).

Proor. The action of i,j,k on TB is via A of (1-1-1). We must first show
i,j,k are sections of Gps. The bar operation changes each 6; to —6; so it changes
6105 to 6261, thus i is in C(T'M), hence in Gpr, similarly for the others. We must
next verify the condition A(i)n = 0 etc.. The matrix representation of i is

-q T 0 0

oo _ — ¥ —-p O 0
/\(1) = )\(9192) = 2\/ 1 0 0 q —F
0 0 -r bp
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with p = |21]?, ¢ = |22|* and r = 21Z5. Therefore

—qz + 122

. N Tz1 — pz
AlD)n = A(i) <E> = qfi -2;72 =0,
-T2 +p22

Similarly,
Ajn=0, Akn=0.

Hence i, j and k are sections of Gg. The commutation relations are easy to verify.

Proposition 3.4 shows that i, j and k generate the Lie algebra Gp of infinites-
imal transformations of F'(B), hence of Spin(B).
Let

1
(3-2-1) Tp = 5(63i+ 635 + 63k).

' is a o(3)-valued 1-form on B.

ProrosrTioN 3.5. I'p defines a connection on the associated bundle TB =
F(B) xo(s) R? by the formula

V(3o fi8:)= > (dfi - 0; + fil'p6;), i=0,1,2

(3-2-2) .
FBeir— Zj wz?9j
with
(3-2-3) wi =05, wi=—wl (4,5,k) =(0,1,2) cyclically.

Proor. That I'g defines a connection is obvious. We shall verify (3-2-3).

V6, =T'gb, is a T B-valued 1-form and by the same calculation as in Proposition
34,

0 ifp=20
Veo0, = %,\(i)op =l 26 ifp=1.
01 ifp=2
Similarly
82 ifp=0 -6 ifp=20
Vg, 0p,=1¢ 0 ifp=1 Ve,0p = ¢ o ifp=1.
-0 ifp=2 0 ifp=2

Thus (3-2-3) is proved.
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Lemma 3.3 yields that I'p is torsion free, hence is the connection form for
Levi-Civita connection. The corresponding connection on Spin(B) is given by

vp = g(2)"'(dg). + g(2) ' T'p(2)g(z) for g € Spin(B).

Lemma 3.3 yields also the following: i

COROLLARY. The curvature form of yp is given by
(3-2-4) Q(yg)! = 367 A 6.

Q(vp) € £%(GB).

Now the spinor representation of Gg is given by At (i) = —o3, A*(j) = o2
and At (k) = o;. From this spin representation and the definition of vp we have
the following:

LEMMA 3.6. The Levi-Civita connection on B has the spinor representation

on AT :
(VT 2
AT (yg) = 3
% —/=16}

Lemmas 3.2 and 3.6 show that the boundary value of A*(v) is A*(yg).

4. Dirac operators

4.1. Let S = Spin(M) X gpin(2n) A be the spinor bundle described in section
2. The Levi-Civita connection + induces a connection A(y) on S that has the
formula in Lemma 3.2.

The Dirac operator is a first order differential operator D : EO(M,S) —
E9(M, S) defined as follows. Let V be the covariant derivative Vo = dp + A(¥)e.
There is a natural identification of the tangent bundle TM and cotangent bundle
T* M. Hence we have the bundle homomorphism x : S®T*M — S coming from the
Clifford multiplication. The Dirac operator is the composition of these two maps:
D = po V. D changes the half spinor to each other:

11 D=D|St: %M, S*) — %M, S7),

(4-1-1) Di=1D|S~ : E%(M,S~) — EO(M, ST).

We note that £2(C™, St) = £2(C™, A) and £°(C™, ™) = £°(C™, AY), see 2.3,
We shall give an explicit expression of the Dirac operator in the coordinate

system on C* C M. We suppose n = 2 for the sake of simplicity. The same

calculation goes well also in general case but will be more complicated. Remember
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that the expression in the coordinate system on C? C M has the same formula as
that on C? because the connection 7 does so, see Lemma 3.2.
To apply Clifford multiplication x4 we do the following identification:

(1+|2*) " dz « O, (1+12*)"1dz; « ;.
These laws for calculus, Lemma 3.2 and (2-3-3) yield the following

LEMMA 4.1.
—Z21 T2y
zZ2 =2

3 3
A =2 o = 2|20
prAM =51 5 4 . 512170

Now we have the following expression of Dirac operator:

ProOPOSITION 4.2. Dirac operator D has the following matriz representation:

0 Dt
p=(5 )

(1) on C?,
b (1+!z|2)5‘2—1—gz1 _(1+|Z]2)5%+%z2
(1+|z|2)8%2‘—%“2 (1+|Z|2)_3:__% .
Dt = (l—i—lZIZ)é%; - 57 (1+] !2)__2_2 B gzz
_(1+!ZI2)~8—5+2‘Z‘2 (1+|zl2)%_%zl

(2) the same matriz representations written in the coordinates (w, W) on c2.
We can verify by direct calculation the next proposition which says that the
operators given by the above matrices define in fact differential operators on M.

PROPOSITION 4.3. Let ¢ be an even (resp. odd) spinor on a domain in C°
and let ¢ = A(~(70|ST))P be the corresponding spinor on C?. Then we have

D@(w) = m(z) resp. Di(w) = m for w=v(z).

V=1D and ~/—=1D' are elliptic operators and are formally adjoint to each
other.
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REMARK. We saw that the representation obtained has the same formula in
two local coordinates; this is explained as CPT- theorem; the transition function
of M restricted to B, w = —Z%, represents the change of parity on B =2 S3 and the
time change is given by log |w| = —log|z|. The change of charge is described by the
change of spinors p(w) = —7o@(z), (2-3-2).

ProrosiTION 4.4.

on M — {0, 0}.

In fact, we have

1+ IZP)??% = I—il(ily — 2g9€) = I—i—l(zlﬁ-i—Ez(S) ete. .
Replacing the entries of matrix representation of D in Proposition 4.2 we have the
assertion. Here we used the abbreviation 7o instead of A(7o)-
4.2. Lichnerowicz’s theorem says that there is no harmonic spinor defined
on M:
{o € &%M,S): Dp =0} =0.

On the other hand there are plenty of harmonic spinors on C? or on C? as we shall
see in the following.
Let A(S+) be the sheaf of zero mode spinors of even chirality :

N(S+)={cp= (i;) €S+:D<p=0}.

We put p = (1 + |z|2)‘%p1 where p; is the projection p; : ¢ — ¢1, and j =
Jo(1+ |z|2)% where 2 is the inclusion jz : ¢ — (3) Let H be the sheaf of harmonic
functions and @ be the sheaf of holomorphic functions. These are sheaves of linear
spaces.

ProrosiTion 4.5.  The next sequence 18 ezact:

(4-2-1) 0— 0L N(ST) EsH — 0.

In fact, from the above expression of D, we see that ¢ = py is a harmonic
function. Conversely, let ¢ be a harmonic function on an open neighborhood U
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of x € M. Let a = —gf’z—dil + g—z—dig. a is a O-closed (0,1)-form on U. There

is an open neighborhood V C U and a solution 9 of du = « on V. Then p =
3

o1 =(1+1z[*)7¢

2 = (1+ 2123y

of p consists of { <g> € N(SH); 8(1+]22) 29 = O}, that proves the proposition.

> satisfies D¢ = 0. Thus pp = ¢ and p is surjective. The kernel

Let G C C? be a strongly pseudo-convex domain with smooth boundary.

COROLLARY 4.6. The neat sequence of linear spaces is exact and splits:

0 — O(@) -1 N(SH)(G) 2> H(G) — 0.

The exactness follows from the vanishing of cohomology: H G, 0) = 0. Let
¢ be a harmonic function on G and define a as above. Hormander’s projection
P for the O-problem gives us a global solution % = Pa of 8y = a on C?. Put
ws = (1+|2|?)2¢ so that we have pp = ¢.

4.3. Now we shall give a matrix form of the Dirac operator on the boundary
B. Let dp be the exterior differentiation on B:

dpyp = Boply + 01007 + 02005,
The Dirac operator on B, Dp : £(Sf) — £(Sg), is defined by
Dp=p- Vg =p-(dg+A%(yp)),

where we do the identification 8} «+— 26; when we apply Clifford multiplication .
Since v/26; ,i = 0,1, 2 are orthonormal basis for the metric g we can write also
Dp =23 6:(Vg)e,.
Another type of Dirac operator on B that does not change the chirality is
often used ([Hi]). This operator is defined by

2
P =71Dpp=2r> 0;Vep

i=0

for ¢ € £9(ST), where 7 is the Clifford multiplication of \/—16y6,6;. We call P
Hamiltonian. It is easy to see 7 = —v0|S~. The adjoint Dirac operator of Dp

is defined by the same formula as above but operating on the odd spinors: DL :
E(S7) — &£(ST). We have

(4-3-1) P=—-(1lS")Ds,  P(vlS™)=D}.
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The Dirac operator is decomposed to its radial part and Hamiltonian on the
equator.

PROPOSITION 4.7,

(1)
D = (7|S)(n - P),

D= (n+P)(7lS7).
2)

(T Ao )

Proor. (1) d=nn*+dp, so we have

<o Lﬁ) _%<o DE)
paseet n
D o) Dp 0

_ ( 0 n(y|S™) +73(’Yo|5‘)>
(lST)n = (vl ST)P 0 ‘

(2) From Propositions 4.4 we know that

p=cuis{ (¥ ) -3}

—uts?) n-cols { (T S )54 (0 1))

hence

(4-3-2) P=(~{f% %;%>+;4<é2>.

By (4-3-2) we extend P to C* — {0}. Then the above decomposition
(4-3-3) D = (7/8")(n —P)
holds also on C? — {0}.
ProrosiTiON 4.8.  Forw =v(z), 2z € B,
Pp = Po.

We omit the proof.



20 Tos1AKI KORI

4.4, We have
(4-4-1) <D, >=<Dp,p>, <@ Dl >=< ¢ Dip>

for p € £°(S*), ¥ € £9(S™). The following Stokes’ formula is valid:

ProposiTion 4.9.  For ¢, ¢ € £%(R, S), we have

1

1
- f = =
/R(1+|z|2)4 (<D<p,1p>+<<p,D¢>)dV 8/B<70<p,¢>da.

On B the volume element do is written as do = O5AGF AG% = —2/—=105 Ae* Ae*.
As operators on L?(B, do), o is selfadjoint: (6p¢, 1) = (¢, 00%), and the adjoint of
€ is —€. Therefore the Hamiltonian P is selfadjoint.

REMARK. If ¢ is a zero mode spinor of D then each component of ¢ is a
harmonic function multiplied by (1 + [2[2)%, hence [p[2(2) =< @, >(2) is a
subharmonic function multiplied by (1+|z|?)? and the L?-norm of ¢ on R is smaller
than a constant multiple of that on the boundary B. The constant is an absolute
constant. Similar assertion is also true for the derivatives of ¢.

5. Eigenvectors of the operator P on B

5.1. (a) Being a self adjoint elliptic differential operator, the operator
P:E%B,SE) — E%(B,S3%)

has a discrete spectrum with real eigenvalues. We shall look for the eigenvectors of
P by using the same argument as that we encounter when we construct a highest
weight representation of SU (2) on the space of spherical harmonic functions [Hi,
Gol, Sch]. Detailed calculi in (a) are found in [K-2].

We note first the commutation relations:

2 2 2
(VT P P Vs v PO e S P 2 el 2 P

|2 2] E

In particular, on B = {|z| = 1}, we have the following commutation relations
which are the same as those of si(2,C):

[V—100,€) = —2¢, [V—=100,8 = 2%, [e ¢ = 4v/~16p.
(5-1-1)
[V-1r0,6) = —26, [V=17,8 =25, [6,8] =4V ~1r.
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In the following, we shall use double indices o = (a3, @), @;’s being non-
negative integers, and the notation z® = 2025 for z € C?. We shall write also
la| = a1 + az. A polynomial that satisfies the following homogenuity condition:

P(az,bzy,b%1,0Z3) = a®'b*2 P(z1, 29, %1, Z2)

is said to be of class (). The set of polynomials of class (a) is denoted by So. Let
‘H be the set of harmonic polynomials on C? and put Hy = H N S,. We have the
decomposition S = Ha®|2|?Se-1, hence dim H,, = |a|+1. On B every polynomial
is written as a sum of harmonic polynomials in H,. Put, for a double index o and
0<¢g< |a|s

|2| ? 0 o \*
1. q LI N (1: — — o
(5-1-2) hl(z) = (1+|z|2 z 2281+ 5% z%.

For each a the set {h%; ¢=0, --,|a|} forms a basis of H,.
Let H be the space of harmonic polynomials that satisfy the homogenuity
condition:
P(azl, azg,bz1, bzg) = g™ bo‘zP(zl, 29,21, 52).

A polynomial that satisfies this condition is said to be of type (o). Let

ro _ 1Zl ! —a1 02y _ _?____ _a_ ! —ay Q2
(5-1-3) hq(z) = (1—1—]2[26 Zy'23°) = 8‘ z 57, (29" 25°)-

The set {ftg‘; g=0,+-,|a|} gives a basis of He for each a. The next relation holds:

L) — (—1)e T
h® = (1) bgh(a,b)

for the pairs (p,q) and (a,b) such that p+¢=a+b.

ProposIiTION 5.1.  The following relations hold on B:

(1) V=160 kg = (|| - 29)hd

(2) ehd = 2hLH!

(3) €hg = —2¢(lo] — g+ 1)hE

Simalarly,

(1) V=Trohg = (ja| - 2q)hg

(2) 6 h"‘ = 2hq+1

(3) 5h2‘ = -2q(ja| — g+ 1)hg 4

ProoF. From the commutation relation (5-1-1) we have

1 2
vV =10pe? = /—1€%0y — TZ'IZl qe? = V/—=1e%y — 2get.
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This implies the first equality. Similarly for the others.

Recall the relation mentioned at the end of 2.5 between the vector fields
0070 ,€,... and the right and left representations Ry, and Ly of SU(2,C) on the
space of functions on B. From the above proposition we conclude that the space of
harmonic polynomials H (restricted on B) is decomposed by the right action R of
SU(2) into H = 3, 3 4=r Ha- Each induced representation R, = (R, H,) is an
irrreducible representation with the highest weight L;‘—' The corresponding assertion
for the left representation Lo H =323 aj=r(Ls H*) holds similarly. We have

A|Ho = dRa(C) = dL¥(C) = ———~|a|('°;| £,
by (2-5-8).
ProprosiTION 5.2.
al !
(1) (hﬂ» hq) = bp,q 6a,p ;Erﬁ(;—oﬁ*p)‘w
/\a A~ I
(2) (hp’ h ) = bpqba,p |a|+1 qa—f);T
Proof follows from
5 albl
/|2122|d a+b+1)

(b) Now we shall proceed to the discussion of eigenspinors. Since P commutes
with the Laplace-Beltrami operator A; on S% we may consider P restricted to the
eigenspace of Ay, that is, on H|B.

Put, for o, 0 < ¢ < |a| + 1,

ghg(z)
(5-1-4) 82 (2) = . zeB.
—hi(2)

We shall use the following convention:

0 +1) i
# = e [ ebrns
__hg 0

From Propositions 4.7 and 5.1 we have

(5-1-5) Poss) = (lol+ ) o ).
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Therefore the numbers 7 + %, r > 0, are eigenvalues of P. As for the multiplicity,
the dimension of the linear space spanned by ¢%,0 < ¢ < 7+ 1, for each o with
la| = 7, is equal to r +2. The number of ways of choosing 1s equal to 7 4+ 1. Thus
we have shown that the positive eigenvalues of P are r + 2, r=20,1,---, with
the multiplicity (r + 1)(r +2).

Next we are going to discuss the negative eigenvalues. We define the following
spinor on B:

}Azgx,az+1(z)
(5-1-6) mg (2) = N
hql ’2(Z)

We can verify immediately
—~/—16g €
—€ vV —190

hence 7¢ is an eigenvector of P that belongs to the eigenvalue —(Joe| + ). Since §
commutes with 8y, € and &, all the

n§ = — (o] +3)75,

Ty =6ng; ¢=0,1,---,7+1

are eigenvectors of P with the same eigenvalue —(|af + 2.
Thus we have shown that, for each 7, o such that |a| = r and g ranging from
0to r+1, 77 is an eigenvector of P with the eigenvalue —(r + 5 ) The multiplicity

P
is (r + 1)(r + 2). Since the spinors <%‘) and (h0p> are written by a linear
«

combination of ¢ and 7r(p lod=P) the system obtained is complete. We have proved
the following:

TuEOREM 5.3. The eigenvalues of P are

3
:i:<§+r) ; r=0,1,2,--

with multiplicity (r +1)(r +2); in particular, there is no zero mode spinor of P and
the spectrum is symmetric relative to 0.

ProrosiTioN 5.4.

_ ¢!
(¢ga¢g) - (|a|+1 _q)!a‘

o _ay _ g
570 = a1 =91

(¢5.m7) =0.
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The first and the second follow from Proposition 5.2. The third follows from:
[€,6] = [e,8] = 0. We note that the corresponding expression of Tg on B={we
C?% |w| = 1} becomes

(5-1-7) fig (w) = =(0|S*)mg (vIw) = (~1)/

a formula parallel to (5-1-4).

5.2. Extension of spinors from the equator
(a) In the following we shall discuss various extension problems of spinors
from B to either of hemispheres as zero-mode spinors of Dirac operator D or DT.

Lemma 5.5. Let a be a smooth function on (0,00) and let f(2,%Z) = a(|z|).
Then 6y f, ef and €f vanish for z # 0 and

nf(z, = L

a'([2]).

LemMA 5.6. Let ¢ be an even spinor on B and extend it to a neighborhood
of B by the formula
z Zz
. l2l" |2

Then n@® vanishes identically and

pee) =i (Po-3o) () + 30 (i)

Let H be the space of square integrable spinors of even chirality on B. Let H4
be the closed subspace of H spanned by the eigenvectors {¢&}, o (resp. {75 bp.er)
corresponding to the positive (resp. negative) eigenvalues A = £(|o| + 2)of P. In
the sequel we denote by ¢, either of eigenvectors {¢%}, q, {75 Yo

Let H*(R, S*) denote the Sobolev space of spinors of even (resp. odd) chirality
on R = {|z| < 1} with derivatives up to order s in L?, similarly for H*(B, S¥).
Let b be the trace to the boundary: b: H*(R, S*) — H*~%(B, $%), s > 1. b has
a right inverse of Poisson-Szegé type integral: K : HS“%(B, S*) — H3(R, S%),
[H8, T]. Since P IS an elliptic operator of first order on B, the Sobolev norm of
=3 axps € H3(B,S*) is given by |]<,0||2 =301+ |/\|)|a,\|2

We put

(5-2-1) N(R)={f € H'(R,S): Df:o on R°}.
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feN(R)is C® on R°.

Let H* be the space of square integrable spinors of odd chirality on B. o
switches H and H*: (y|St)H = H*, (v|S™)H* = H. We shall define H} =
(v0]S+)Hy. Let H*(R,S™) be the Sobolev space of odd spinors on R and put

(5-2-2) N(R)o = {f € HY(R,57): D'f=0o0n R° and f(0) =0}.

On another hemisphere R we have the boundary trace b: H 1(ﬁ S*) —
H%(B,S*) which comes from the boundary trace HY(R,S%) — H% (B, 5%) fol-
lowed by the patching up: H# (B SE)39p=-Fp— p€ H3(B,S%).

We put

(5-2-3) N(R)={f e H'(R,S*): Df=0on R }

Similarly,

(5-2-4) N (R)o = {f € HY(R,S™): D'f =0on B° and f(0) =0 } .
Let

(5-2-5) ra(t) =% <1 J;ﬁ)%

For an eigenspinor ¢, of the Hamiltonian P with the eigenvalue A, we put

®x(2)=ra(lzl)da(F) on C* = {0},

(5-2-6) 8, ()= —70®x () lsmv-1(w) om C? — {0}

These spinors patch together to define a spinor on M — {0, 0}. On C? — {0}, 3, (w)
has the form:

(5-2-7) Ba(w) = w| >3 (1 +:lwl2> 2 <|’wl)

If X is positive it is written as A = 7 + % and ¢, = ¢ for some a with
lo| = r and 0 < p < 7+ 1. Since ¢% is homogeneous of order r we have Di(2) =
(%)%% (2), which is actually defined on C?. On the other hand, for a negative
A we have A = —(r+3) and ¢» = 7. Then, 7y being homogeneous of order la] =7

from (5-1-7), ®5(w) = (li;”—iz)%frg(w) is defined on CZ2.

LemMa 5.7. (1) For a positive eigenvalue X, ®5(z) is a zero-mode spinor of
D on C°.
(2) For a negative eigenvalue A, ®x(w) is a zero-mode spinor of D on Cc2.
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Proor. First we suppose A = 7 + %, r 2 0. From Lemmas 5.5 and 5.6 we
have:

D®3(2) = yo(n — P)&, ()

=1 2*)ri(2]) - _§1+|z]2T z|) = 3lz|ra(]z =
=3 (D = 0= D ) = 3ltrae)) o ().

But 7, (t) satisfies the equation

(1+ 3 (t) - (A - =
Therefore D®, = 0. The second assertion is proved similarly by virtue of Proposi-
tions 4.3 and 4.8.

Now we shall look at the space of odd spinors. For an eigenvalue A we put
¥} = (%|St)ér. ¥} € H* and ¢y = (10|S™ )%, We define

(5-2-8) W3(2) = (r0l5*) (sx(iz!m (—)) =l (),

E [F]

where s,(t) = (rA(t))"! = t_o‘_%)(lft?)%. If X is negative we see as in Lemma 5.7
that T3 extends ¢ to C* and ¥3(0) = 0. Writing the equation satisfied by s, (t)
we can verify that

DT‘IJf\ = (n+ P)y ¥

1

22
=5 (@+1Psile + 0 - AL

2|

sx(le) +3slsr (D)) s £ =o.

Then, as in Lemma 5.7, we have the following:

LemmA 5.8, Let

3 (2)= sa(2)3(F)
(5'2'9) =~ — 3 373
\Ili(w): —70 Wi(z)lzzv“l(w) = Iw!/\+§(ﬁ_|2w_|2')§w;\(|wﬁ|)
These patch together to define an odd spinor on M — {0, 6} which extends 3.

(1) For a positive eigenvalue )\,‘@f\(w) is a zero-mode spinor of Dt on C?
that vanishes at 0.

(2) For a negative eigenvalue A\, ¥%(z) is a zero-mode spinor of Dt on C?
that vanishes at 0.
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LeMMA 5.9.

b:N(R) — HynH#(B,ST)
b:NT(R)o — H*NH2(B,S7)

are surjective.

In fact let p € Hy N H%(B, S*) and expand it in > asol®, ¢2)éa. Put Ko =
> as0(@, 92)®a(2). By virtue of the remark after Proposition 4.9 we can show
that K is well defined and is in H%(R, $*). From Lemma 5.7 we have DKy =
0. Let now ¢* € HX N H#(B,S™). Then ¢* = Soaco(@*, ¥3)¥3. We note that
(@*,93) = ((vlS7)¥*, ¢»). Hence we can argue as above and see that KTy* =
>oaco(¥*, Y)Y isin H: (R,S57) and DTK1* = 0. The fact that Ky € HYR,S")
is verified in a routine way. For example, we refer to [Ho] or [T]. More generally, as
a Poisson-Szegd type inverse of the trace b we can define

(5-2-10) Ko(z) = 3 (0, 2)2x(2) + 2 x(12]) (0, 62)2(2)

A>0 A<0

for ¢ € H, where x(t) is a smooth function that vanishes near 0 and is equal to
1 for t > 3. Similarly the boundary trace b: HY(R,S") — H3(B,S™) has the
right inverse given by

(5-2-11) Kt () = 3 x2) (b 63 T3 (2) + (6, 82 T3 (2).

A>0 A<0

LeMmMa 5.9-bis..

Nt(R)o — HLNH!(B,S7)
.N(R) — H_nH?(B,S")

o O

are surjective.
TueoreM 5.10.
b:N(R) — HyNH%(B,S")
b.N(R) — H_NH%(B,S")
are isomorphic.

Proor. Let & € N(R) and ¢ = bP = ¢y + ¢ be the decomposition with
é4 € Hy. From lemma 5.9 ¢, is extended to a spinor @, € N(R). The spinor
® — &, on R has the boundary trace ¢ — ¢4 = ¢ which is extended to define a



28 Tos1aKl KoRi

spinor in N (ﬁ) from Lemma 5.9-bis. Thus we have a spinor defined on the whole
of M and annihilated by D, which must be 0. Hence b& € H.,. Similarly for the
second assertion. We have known already the surjectivity of b and b. The injectivity
assertion follows from the last remark in subsection 4.4.

The following theorem is proved in the same way as for the previous one.

THEOREM 5.10-bis..
b:N1(R)o — H*NH?(B,S™)
b:NY(R)o — HXNH(B,S™)
are isomorphic.

COROLLARY 5.11.
{¥ e HY(R,S7); D'¥ = 0} = NT(R)o,

that is, every zero mode spinor of odd chirality vanishes at 0.

In fact, put 1* = bV and let 9* = ¥ +9~ be the decomposition to % € HY.
By the theorem ¢* =b¥_ fora ¥_ € N*( Jo- Hence 9} = ¢* —¢p* =b(¥ —¥_)
with (¥ - ¥_) € HI(R S§~) and D' (¥ — ¥_) = 0 on R°. On the other hand
Y% =bA for a A € NT(R)o. Thus ¥} is the trace on B of a odd spinor on M that
is annihilated by, D'. It must be 0 and ¥ = ¥_ € A(R),.

(b) We define a pairing of H and H* by

(5-2-12) ("] p) = /B < @, v0Y" > o(dz) for ¢ € H and ¢* € H*.

Theorem 5.10 and Stokes’ theorem (Proposition 4.9) yield that Hy and HZ are an-
nihilated mutually by this pairing. On the other hand, H + and Hi are respectwely
in duality. This is proved by Hahn-Banach’s extension theorem.

A coupling between A (R) and NT(R)q is defined by

(5-2-13) - /B ®(z)- T "(v(2))o(dz) = /B <@, 0" > o(dz),

for & € N(R) and T* € N'1(R)o, where T*(w) = —T* Y U*(2)] = —v-1(w). Also the
coupling of & € M(R) and T* € A/ T(R)o is defined by the integral:

(5-2-14) —/B T*(z) - {f(v(z))o(dz) :/B <V, %P > o(dz).

The duality between Hy and H} above and Theorem 5.10 prove the following:



Index of the Dirac operator on g4 29

TugoreM 5.12. (1) The dual of N'(R) is isomorphic to N1(R)o.
(2) The dual of N'(R) is isomorphic to NT(R)o.

6. Index of Dirac operator

The infinite dimensional Grassmannian on B associated to the eigenfunctions
of P will serve as the set of lateral conditions of the Dirac operator on a hemisphere
of §% . '

6.1. H is always the space of square-integrable spinors of even chirality on B.
Hy is the subspace spanned by the eigenvectors @P, (resp. w;‘) corresponding to the
eigenvalue :i:('r'—l-g—), where the indices are ranging over 0 <7, 0 <p <r+1, la| = .
The orthogonal projections on Hy are denoted by Pry, .

The infinite dimensional Grassmannian Gr(H) = Gr(H;P) consists of those
closed subspaces W for which

(1) the orthogonal projection Pra_ |W : W — H_ is a Fredholm operator,

(2) the orthogonal projection Pra, |W : W — H, is a compact operator.
Gr(H) is a Hilbert manifold modelled on the ideal of compact operators H_ —
Hy, [P-S]. Fora W € Gr(H), Pra_ |W being a Fredholm operator, the dimensions
of its kernel and cokernel are finite and we define the virtual dimension of W as
the index of operator Pry_|W; namely,

virtual dim W = indez(Pry_|W) = dim ker(Prg_|W) — dim coker(Pry_|W).

We shall now define an ordered index set to enumerate the eigenvectors ¢%, wqﬁ ,
which is useful for describing basic elements of our Grassmannian.

For a triplet A = {£(r+ 2); @, p}, 0 < 7, o] = 7,0 < p < r+1, we put
2= {Flr+ %), &, 7+1—p}, where & = (ag,a1) for a = (ay, a2). Lexicographic
order for the triplets A = {s; @, p}; s = £(r + 2), is defined by A 2 X if either (i)
s> s, or (i) s = &, a1 > af, or (il) s = ', a; = o/ and p > p/. Hence A > X
implies —A < —)'. The smallest positive is o4 = (2,(0,0),0) while the largest
negative is o_ = (—3,(0,0),1).

We denote by Z the set of all triplets A and Z>g (resp. Z<o) the set of all
A > oy (resp. A < o-). We put also Z<o = {pezZ;p<a}foracZ.

A subset A of Z is called Maya diagram if both ANZ>o and A°NZ.g are finite
set. The integer x(4) = #(Z50NA4) — #(Z<0 N.A°) is called charge of A. A denotes
the set of all Maya diagramms.For each Maya diagram A € A with x(A) = p there
corresponds a unique increasing function s Z<o — Z such that (1) s(v) =v+p
for sufficiently small v and (2) Image (s) = A.

For each +) = £(r + 3, @, p) € Z we associate

(bg 1fA_>_O+
me i A<o-

(6-1-1) = {
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(We shall often write, although somewhat confusing, A = %(r + 2).) For a Maya
diagram A, H4 denotes the closed linear subspace of H spanned by {pr; A € A4},
Evidently Hz_, = H_.

ProposiTION 6.1.  For every W € Gr(H) there is a unique A € A such that
the orthogonal projection

Prg W W — Hy
is an isomorphism.

The proof is similar to Proposition 7.1.6 of [P.S.].

Let W € Gr(H). From the above consideration there corresponds a unique
Maya diagram A = Ay and a linear map w : H4 — H with the image w(Ha) =
W such that w_ = Pry_ - w is a Fredholm operator and wy = Pryg, -wisa
compact operator. The index of this Fredholm operator is found to be equal to the
charge x(A) : x(A) = virtual dim W. W has the following particular frames called
canonical basis:

w= (W) e 4

(6-1-2) Wy = Py + Z uZ¢u

Acdu>u

Let W+ be the orthogonal complement of W in H. W+ has the frames

wt = (w;l\-)/\eAc
(6-1-3) wy =dr— Y udd,.
Ade<A

(uf;) is a compact operator. The frames {w,,, wf\'} peA, e e are uniquely determined
by W € Gr(H).

6.2. For a W € Gr(H), we denote by Pry the projection operator of H
onto W. Pry. denotes the projection on W+. The space of all C*° spinors of even
chirality on R satisfying Pry . (| B) = 0 will be denoted by C*=(R, S+; W+) and
C¢° will denotes spinors vanishing for |2 less than some ¢ > 0. Similarly the space
C*(R,S™; W) is defined by the condition Pryy (yye|B) = 0.

From Stokes’ formula, Proposition 4.9, we have

(6-2-1) (D, %) + (i, DTy) = 0

if p € C°(R,S*; W) and ¢ € C(R,S5—; W),
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PROPOSITION 6.2. Let W € Gr(H). There is a linear operator
Q: CF(R,57) — C(R, 8+ W)

such that
(1) DQ = Id on C=(R,57)
(2) QD = Id mod a finite rank operator on C®(R,ST, W+)
(3) Q extends to a continuous map L*(R,S8™) — HY(R,S%; wi).

Proor. For a smooth function g(t) on [0,00) vanishing on a neighborhood
of 0 we put

Fo(w) =) [ sxlpo®a
Fow) = () [ sn(Or3mo0

Frg (= F{ f or F}g) is a smooth function on [0,1] and solves the equation

3> ! _;uzf — 3uf(u) = 2g(u).

d
2
- ~{xr=2
) ) - (3-3
The same calculations as in Lemma 5.7 implies that

D(Bo) s () = wall=é: (&)

We note that (Fig + cr,\)(lzl)qs,\(ﬁ—[) for any constant c satisfies also the same
equation; this fact will be used later. We have F;g(1) = 0. To prove the proposition
first we shall treat the case W = H 4 for a Maya diagram A. Let ¢ € C>(R,57)
and expand it in

(=) = (0157) 3 ga(lz)éa (ﬂ) |

For each gy we associate the above solution functions:

f _{Ff\)gA for e A
*T \ Flgy forAe A4S’

and put Q\¢(z) = f,\(lzi)qﬁ,\(ﬁ). Then Qai(z) = 0 on B for each A € A%
that is, P'r‘Hj (b@Q y) = 0. For each X, @» defines a map from C®(R,S™) to
C®(R, S*; HE). Formally @ = Y Q» satisfies (1) and (2). Now A°N 2o and
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AN Z5o consist of finite elements. Except for these finite number of \'s we have
the following estimates

[ inwrasa [ inors

/[—f,\ ]du<C’2/ lgx(t)]dt .

Therefore the sum Qy(z) = 37, Qab(z) converges for |z| < 1 and satisfies the
desired properties. In the above we have referred to the argument of Proposition
2.5 in [A-P-S]. For a general W € Gr(H) we revise the argument as follows. We
expand % by the canonical basis of (6-1-2) and (6-1-3);

= (10l$*) {Zh lzl)w# + ) h(lzhw —|}

HEA pEAC

and rewrite it with respect to the basis {¢}.

¥(2) = (v]SY) {Zgu(lzwu + D 9ol il }

BEA pEAS
with
gu(t) =hu(t) = > ()l forpeA
u<veAe
= h,(t) + Z ho(t)uf  for p € A
p>o€A
Put

Gu(t) = Flhu(t)— > ulFlh,(t) forpecA

u<veA*©

Go(t) = Fohy(t) + D ul (Foho(t) +crp(t)) for p € A°,
p>oEA

where ¢ = FQhy (1) — FPhy(1). Then by the above argument the sum
2: G IZ ¢#| P
nEAUAC

converges in H'(R, S*) and satisfies (1) and (2). We can verify that, for z € B

ZFh yeWw.

HEA

)
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The proposition is proved.

D has the closed extension Dy with the domain
HY(R,S*, W) = {pe HY(R,ST): Pry.(¢|B) =0}
and DT has the closed extension D}L,V with the domain

HY(R,57;W) = {4 € H'(R,57) : Prw(v9|B) = 0}.

ProrosITION 6.3. v——lD;ﬂv and /=1Dy, 1 are adjoint to each other.

The proof follows from the argument of [A-P-S, p.51]. @ in Proposition 6.2
gives a bounded inverse of D with domain C*(R,ST; W+) and similarly we get
a bounded inverse R of D with the boundary condition Pry (yo%|B) = 0. Then
V=IR and v/—=1Q are mutually adjoint from (6-2-1). Since adjoints commute with
inverses, the proposition is established.

For W = H_, in particular, we put Dy, = Dy, D}y, = D! . Then v=1D,
and \/——_IDT_ are adjoint to each other.

It follows from the proposition that the domain of Dy 1 is the kernel of the
composite maps b : H*(R,ST) — H#(B,S*) — H and the projection Pryy. :
H— Wt

TuEOREM 6.4. (1) dimkerDy 1 = dim ker(Prg_|W).
(2) dim kerD;r,V = dim coker(Pru_|W).
(3) indezDw . = virtual dim W.

Proor. Theorem 5.10 implies that
kerDy 1 = {p € N(R): Pry(p|B) =0}
—i—> {¢' € Hy: Priyo(¢') =0} = ker(Prw.|Hy).

But since ker(Pry+|Hy) = Hy NW = ker(Pry_|W) we have the isomorphism
kerDyy. = ker(Prg_|W). From Corollary 5.11 we have

kerDéV ={Ve N1(R)o; Prw(v¥|B) = 0}
—j* {¢* = ')’o’lp S Ht; Prw(’(,b)_ = 0} = keT(Prle_)’
which is the same subspace as coker(Prg_|W). Hence the boundary trace b gives

the isomorphism keTD;r,V ~ coker(Prg_|W). (3) follows from (1), (2) and Proposi-
tion 6.3.

COROLLARY 6.5. (1) kerDy = ker(Pry_|H-)=0.
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(2) kerD! = coker(Pry_|H.) = 0.
In [A-B-P] and [S-2] it is shown that

IndezD, = dim kerD,. — dim kerD!

6-2-2 R
(6-2-2) =/A(R)_h+277(0)

where h is the dimension of the null space of P on B and n(0) is the n-invariant of
P. By (6-2-2), Theorem 5.3 and Corollary 6.5 we have an alternative proof of

(6-2-3) fR A(R) = 0.

6.3. Here we discuss briefly the index of the Dirac operator coupled with
gauge potentials [A-S]. Let A be the set of gauge potentials on S* with values in
su(N) and G be the group of gauge transformations leaving the north pole fixed.
Then the space A/G has the same homotopy type as Q3(SU (N)) and the map o
giving the homotopy equivalence is described by the parallel transport by means
of A € A around closed curves parametrized by the equator 53, [S-1]. Mickelsson
[M] showed that Q3(SU(N)) acts on Gry(H™N), where Grp(HN) c Gr(HV) is the
infinite dimensional Grassmannian defined by the Schatten ideal Lyp, that is, in the
second condition of the definition stated in 6.1 we demand PrHJz;r [W to be in La,.
Hence to every gauge potential A € A we can associate

Wi =a(4) - HY e Gr(HM).

The virtual dimension of W4 is seen to be equal to the index of the multiplica-
tion operator a(A) (which is defined by the Fredholm entry of the multiplication
operator) and by a little modification of Atiyah-Janich theorem we can show that
the index of the multiplication operator a(A) is equal to the degree of a(A) in
Q%(SU(N)). From the Atiyah-Singer index theorem the last number is equal to the
index of the Dirac operator D4 on M coupled to gauge potential A. Hence we have

indexDy = virtual dim W4.

It is desirable to make clear the correspondence of D4 and ij and to prove the
above index formula from Theorem 6.4.
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