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Abstract. The present paper is concerned with extensions of complex analysis on
the complex plane C to conformally flat 4-manifolds. We shall give in an explicit form
a fundamental system of spinors that will serve as the basis vectors for the Laurent
expansion. Restricted to a sphere around the center of the expansion these spinors
form a complete orthonormal system of eigenspinors of the tangential Dirac operator
on the sphere, and give a basis of the representations of Spin(4). We shall also give the
definition of meromorphic spinors and residues, and prove under some hypothesis that,
on a compact conformally flat 4-manifold, the sum of the residues of a meromorphic
spinor is zero.

0. Introduction

The Dirac operator on the complex plane C is the Cauchy-Riemann opera-
tor J and the elementary complex function theory is the investigation of various
properties of zero mode functions of & and their singularities, that is, properties
of holomorphic functions and meromorphic functions. There the main theorems
are the Cauchy integral formula, the Laurent expansion, the residue theorem and
the Mittag-Leffler theorem etc. In this paper we shall extend these theorems to
the Dirac operator D : C°(C?, St) — C™(C?,S7), where ST are the two spin
bundles associated to two half-spin representations of Spin(4). An even spinor
p € C®((C?, 8%) such that Dy = 0 is called a zero mode spinor. We shall prove the
Cauchy integral formula and a Laurent expansion theorem for zero mode spinors.
We shall give the definition of meromorphic spinors and residues and then prove the
residue theorem. Similar ideas were investigated in quaternionic analysis by Fueter
and his school in the 1930s [F], and by Sudbery [S]. More generally, extensions of
complex analysis to R™ have been studied by many authors, starting with Dixon
[Dx] and Moisil [Moi], and the Clifford analysis has been extensively developed by
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Delanghe and his school [D, B-D-S, D-S-S¢, VL], by Gilbert and Murray [G-M],
and by Mclntosh [Mc|, Mitrea [Mit], Ryan [R], and Sougek [S¢], among others.
The analysis of Dirac operators and their solutions are investigated also on arbi-
trary Riemannian manifolds by Booss and Wijciechowski [B-W], Calderbank [C],
Giirlebeck and Sprossig [G-Sp] and Mitrea [Mi]. We cite [B-D-S] and [D-S-S¢] as
the standard references. But in this paper we need not rely on special knowledge
from this genre. We present all our results by direct calculations and, as the reader
will find, the arguments used here are well known ones of classical function theory.
So our approach has the merit of being self -contained and perhaps well-adapted to
the needs of mathematical physicists. Since the theory is covariant under conformal
transformations concepts like the order of pole and the residue of a meromorphic
spinor are invariant under conformal transformations on R4, hence our theory can
be extended to conformally flat manifolds.

Now we shall explain the contents of each section. Section 1 is preliminary.
The half Dirac operator D : C*° (C2,ST) — C*° (C?,S™) has the polar decom-
position:

0-1) D= (5-7).

where 7, is the operator of chiral change, and @ is the tangential Dirac operator.
We shall introduce a basis of harmonic polynomials on R* that are related to
highest weight representations of SU(2). We then construct, using these harmonic
polynomials as components, a fundamental class of zero mode spinors on C? \
{0} : {¢F(mLRIY ] that will serve as the basis vectors of the Laurent expansion.
Restricted to the unit sphere =~ $3 these spinors form a complete orthonormal
system of eigenspinors of the tangential Dirac operator. The system gives also
the highest weight representations of Spin(4). Things are similar to the case of
the Cauchy-Riemann operator 6% on C, where 2*" serve as the basis vectors of
Laurent expansion and e**? are the eigenfunctions of —z'a%, the latter being the
tangential component of ;% and we have the highest weight representation of U(1).
In Section 2 we shall introduce the Cauchy kernel of the integral representation of
zero mode spinors:

(0'2) (Z C) |3 e (C - )

|C

The integral representation formula of an even spinor is given in Theorem 2.2:

03) o) =55 [ K@ 0DAQVO + 55 | KH:O0000)(Odo(0)
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where vp¢ is Clifford multiplication of the outer unit normal to dG. The higher
dimensional Cauchy kernel, as a gradient of the Newtonian kernel, was first ob-
tained by Dixon [Dx] and by Moisil [Moi]. It was made clear in recent works, in
particular, [G-M], [C], that it is a chiral operator whenever acting on spinors with
chirality. This is transparent by the factor y-({ — 2) in (0-2). Throughout the
paper the author emphasized the point of view that the Cauchy kernel defines a
transformation with singular kernel between spinors of different chirality, contrary
to the description of the Cauchy kernel as Clifford multiplication.

We discuss in Theorem 2.6 the local solution of the equation Dy = 1.

In [K-2] we showed that the boundary trace gives the isomorphism of the
space of zero mode spinors in the interior (resp. exterior) of unit ball and the
space spanned by the eigenspinors corresponding to non-negative (resp. negative)
eigenvalues of the tangential Dirac operator on the unit sphere. The inverse is a
Bergman-Szegé type integral, that is, eigenspinor expansion by ¢+(mbe).

¢:i:(m k) ¢:§:(m 1 k)
5 2

m,l,k

An analogous theorem was obtained also by Mcintosh [Mc] and Ryan [R-2] in
connection with the Hardy space of monogenic functions. In Theorem 3.4 we shall
prove that the Bergman-Szeg6 kernel is essentially the Cauchy kernel.

(0-4)  2m*As(2,¢) = £K(2,) - 11(Q) |2l <[¢| =1 (resp. |2 > [¢| = 1).
This is one of our main results. Recall that the Cauchy kernel on C has the
expansion:

—1—2(3*““%*’“ df = iii, [z] <1 (resp. |z| > 1), ¢ = €.
T 2mt { —
The Cauchy integral formula and the expansion (0.4) yields Taylor and Laurent
expansions of zero mode spinors (Theorems 3.5 and 4.1). The Taylor and Laurent
expansions as well as the expansion of Cauchy kernel were discussed earlier by many
Clifford algebraists. Our novel aspect is to give them in a more transparent way by
making use of the basis consisting of eigenspinors of the tangential Dirac operator.
In Section 4 we shall introduce meromorphic spinors. The residue of a mero-
morphic spinor at z = c¢ is the pair of coefficients that correspond to the terms
of the expansion of order O(W) We shall investigate the effect of conformal
transformations, and then by Kelvin inversion we shall develop the theory around
the point at infinity. Then we prove that the sum of the residues of a meromorphic
spinor on S? is zero. The change of the basis vectors ¢=(™4%) under conformal
transformations is discussed in 4.3. In Section 5 we shall extend our theory to con-
formally flat 4-manifolds. We shall prove under some hypothesis that, on a compact
conformally flat 4-manifold, the sum of the residues of a meromorphic spinor is zero.
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1. Dirac operator and zero mode spinors

1.1. Let A = At ® A~ be an irreducible complex representation of the
Clifford algebra Clif(R4); Clif(R*) ® C = End(A). A decomposes into irreducible
representations A% of Spin(4), each of which has dim A* = 2. Let § = R* x A
be the spinor bundle on R%. The corresponding bundle ST (resp. S7) is called the
even (resp. odd) spinor bundle.

We shall choose complex coordinates and make the identification R* ~ C2.

The Dirac operator is defined by

D=cod

where d : § — S ®@ T*C? ~ S @ TC? is the exterior differentiation and c: S ®
TC2 — S is the bundle homomorphism coming from the Clifford multiplication.
By means of the decomposition S = ST @ S~ the Dirac operator is decomposed
into chiral components:

Dt
(1-1-1) D= <10) 0 ) :C®(C?ST@8™) — C™(C3 8T sT).

We find that D and D' have the following coordinate expressions;

9 _9 9 9
o Oz oz, 0%
(1-1-2) p=|% | pi=| 7
9 9 _o 9
8zg 0% Ozy Oz

An even (respectively odd) spinor ¢ is called a zero mode spinor if Dy =0
(respectively Dty = 0). Several authors call it a monogenic spinor, Clifford regular
spinor or harmonic spinor. Monogenic or Clifford regular is used for Clifford algebra
valued functions annihilated by the Dirac operator [B-D-S, C, G-M, etc.], while
harmonic is used for spinors or functions taking values in a Clifford module [H]. On
the other hand, on a compact manifold Dy = 0 if and only if Ay = DDy = 0.
This is not true on a non-compact manifold, so we prefer to call it a zero mode
spinor.

1.2. The Lie group SU(2) acts on C? from the right and from the left. Let
dR(g) and dL(g) denote respectively the right and left infinitesimal actions of the
Lie algebra su(2). We define the following vector fields on C2.

(1-2-1) §; = —dR ( 4 5 1&) 7 =dL (——V;la> , i =1,2,3,
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where 0!, 02 and 0 are the Pauli matrices. The vector fields 6;(z), i = 1,2, 3, and
7i(2), 1 = 1,2, 3 are tangent at z to the sphere |z| = constant # 0.

It is more convenient to introduce the vector fields;

e=0,+v—-10; = ——Egi—{--z_l-ﬁ—,

(122) 82’1 322
§=1+V-1n =72g _Zli-
621 azg

The following commutation relation holds on B = {|z| = 1}.

[93, 6] = \/—_16, [(93,@] = —\/—-_15, [E,E] = 2\/:T93,

23 0= VTS [l = —vTT, (63 = 2vTn

In the following we denote a function f(z,%) of variables z, Z simply by f(z).
We put, for m=0,1,2,...and [,k =0,1,...,m,
hmar) (2) = (212571,

(1-2-4) -~ k=l m—l
Pimk)(2) = 6" (Z125" 7).

Then A(m k) and /ﬁ(m,l,k) are harmonic polynomials on C%; Ak, 1x) = (5;?;—2—1— +

Egg'z';)h(m,ly %) = 0 etc., here A is the Laplacian. Moreover they form a linear basis
of the space of harmonic polynomials.
We have the following relations:

V=103 h(m15) = (_r_g_ - k) h(m.1,k)s

€h(m k) = Pim, k1)
Ehgmiky = —k(m =k + DA, k-1),

—~ m —~
V=113 him k) = (—2— - /f) h(m,i,k)

(S?L(m,l,k:) = E(m,l,k+1)>

(1-2-5)

S himy = —k(m =k + 1hgm 151y

Therefore the space of harmonic polynomials on C? is decomposed by the right
action R of SU(2) into >, 7" Hpm,, each Hpy = Y 1% o Chimu ) being an
(m+1) dimensional irreducible representation with highest weight 2. Similarly the
space of harmonic polynomials on C? is decomposed by the left action L of SU(2)
into 3, Z?}—_o ﬁm,l, each ﬁImyl =3 o C/l\z(m,l,k) being an (m + 1) dimensional
irreducible representation with highest weight %, [K1, G-H].
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1.3. We shall introduce a set of zero mode even spinors which, restricted to
B = {|z| = 1}, forms a complete orthonormal basis of L?(B, S*). These zero mode
spinors and their variants are important in our theory just as the monomial 2™ or
its inverse ;1; are important in complex function theory.

We put, for m=0,1,2,...,1=0,1,...,mand k=0,1,...,m+ 1,

pmik) () = [ LK) [Rhem kb )
Rm =D \ —homis

¢= (MR (5) = (m+1-k! /1 ™2 Bmt,1)
Ell(m — D!\ |22 '

P(m+1,i41,k)

(1-3-1)

Then ¢(™bk) ¢ C(C?, %) and ¢~ (™hF) ¢ C=(C?\ {0}, 51), and we have the
following homogeneity relations;

$lmbR (2) = |2t (_z_>
(1-3-2) &

¢—(m,l,k)(z) — |Z|—(m+3)¢—(m,l,k) <_|_Z__l> ’
z

for z # 0.

For any ¢ € C? we put
(1-3:3) FEMER () = GEM ;- ).
The following proposition is proved by a direct calculation.

ProrosiTion 1.1.

DR (2) =0, on C2.

(1-3—4) Dd);'(mwlwk) (z) = O, on C2 \ {C}

1.4. Let v and p be vector fields on C? defined by

0 o) g _ 0
(1-4-1) V——Zléz—l +22%, ﬂ_Z25;2+21527'
Then the radial vector field is defined by
0 1 1
-4 Y V)= = o 0.
(1-4-2) o = gD = et Ey el A
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We have also 03 = 2\/1__—1(V —7), T3 = é—l—\/rl-(u — ). Each quartet {2, [71[91', i=
1,2,3} and {Z, ﬁn, i = 1,2,3} forms an orthogonal frame on C? \ {0}. The

Dirac operator written in this orthogonal frame is

2 (1
(1-4-3) D= (@) . V(?%) +Zl (TZ—I01> 'Vﬁgi |z| # 0.

The second term gives the (chiral) tangential Dirac operator on the sphere B, =
{lz] =r}.

On a smooth boundary 9G of a region G we shall denote by vs¢ the Clifford
multiplication of the outer unit normal to 8G. We shall abbreviate it as v if it is
obvious which boundary we are considering. In particular, vy denotes the Clifford

multiplication of the radial vector 5‘%‘ The Clifford multiplication of ysg changes
the chiralty:
(1-4-4) Yog: ST @S — S @St Aig=1

In particular the matrix expression of 79 becomes as follows.

1 [Z1 —29 1 21 22
1-4-5 St = - , - = )
( ) ol |2| (72 21 ) ol |2| (—72 71)

In the sequel we shall write 4 (resp. 7—) for v|S™ (resp. y0|S™).

ProrosiTioN 1.2. The Dirac operators D and D have the following polar

decompositions:
0
D= Y+ (8—n - (7) ]
(1-4-6) 5 3
Dt = — — )y
<8n to+ 2]z|> T

where the tangential (nonchiral) Dirac operator @ is given by
5./71 1 [(—V/~16s g
§=—(7-) Z m&' Ve | = Tl .
i=1 —€ vV -—193

Proor. Wehave 32- = |—21[—2— (Z1v — 22¢), etc. Other components of D and Dt

in the expression (1-1-2) are calculated similarly and we have the desired formulas.

Let B = {|z| = 1}. The tangential Dirac operator

(1-4-7) #|B:C>®(B,S") — C®(B, SH)
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is a self adjoint elliptic differential operator. By virtue of the properties (1-2-5)
of the polynomials A(y,1,k) and h(n,i,x) We can solve the eigenvalue problem for @,
[K-2, Sch].

ProrosiTioN 1.3. On B = {|z| = 1} we have;

1) -
(mLk) — 22 p(milik)
79 ),

—mdk) () — TS (k)
Py (miR)(z) = X2 gmtmii,

(2) the eigenvalues of @ are

Ik

n
2’ 2 ’

and the multiplicity of each eigenvalue is equal to (n+ 1)(n +2),
(3) the set of eigenspinors

1 1
k) = (mbR) .y — 0,1, K 1=0,1,... m+1}
{\/‘Q‘W(b \/2‘7{'¢ b ) b ) b 3 b

forms a complete orthonormal system of L?*(B,ST).
The completeness follows from the fact that the spinors (h(ké’m)) and

( L 0 ) are in linear span of $=(*:4)’s and the fact that the harmonic polynomi-
(k,l,m)

als h(x,1,m) restricted on B are complete in the space of square-integrable functions
on B. The constant for normalization in (1-3-1) is determined by the integral:

B!
2928 2dos = 2m? — 2
/Bl 123|"dos @t+o+1)

where o3 is the surface measure of the unit sphere B = {|z| = 1};

/ dos = 27,
B

1.5. For odd spinors and the Dirac operator D! the parallel argument as
above is valid.
We put

PR () = 2=y (2™ (2), for € €2\,

(1-5-1)
YR (2) = [£] O ()¢ (2), for 2 € CP.
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‘We have

P~ (MR () € C°(C?,87), ¢™bR)(2) € C(C?\ {0},57).

The following homogeneity relations hold.

(1-5-2)
= (Mbk) () = || (madih) (ﬁ) L p(mbR) (5) = ||~ (meA8) g (miLE) <I_z_l) ‘
z z
The translation by c is denoted as
(1_5_3) ngmvlsk) (z) = w(myl)k) (z — C), qp;(m)l)k) (z) = /l/)'"(m»l)k) (z —_ C).

We have

ProrosiTioN 1.4.

Dy (mbk)(3) =0 on C2.

(1-5-4 DiymD() =0 on €\ {c}.

The proof follows by a direct calculation.

REMaARK. The eigenspace of the tangential Dirac operator acting either on
Clifford algebra valued functions or on the spinors on the sphere S™ C R™t! was
investigated in the literatures [B-D-S, D-S-S¢, S, So-1]. They called the eigenvectors
corresponding to the eigenvalue il“i the inner (resp. outer) spherical monogenics
of order +k. The orthonormal basis of inner spherical monogenics of order k are
given by

1 m
(1-5-5)  Viin(2) = 7 Y (@ieo — z0ei,)(Tineo — To€s,) - - (Tiy€o — Toes),

21,82, 0tk

while the orthonormal basis of outer spherical monogenics of order —(k + 3) are
given by

6} ) z -
(1'5'6> Wiy, (ZIJ) = ("Dk 6332'1 U <|x|m+1> » T= ;xlel

8$ik

The reader can rewrite these formulas in case of m = 3 into the almost same
expressions as our ¢pE(™H5) written in polynomial forms.
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1.6. The inner product of two spinors ¢ and v is defined by (¢,¥) =
Ei:l drh,. A vector v € C? of length one acts as a unitary transformation on
spinors:

(1-6-1) (vp, 1) = (&, 9).

Let G be a domain in C? with smooth boundary G. The surface measure on
8G is denoted by dog, or, in brief, do. For ¢ € C®°(G, S) and ¢ € C=(G, S7),
we have the following Stokes’ formula;

(1-6-2) /G (D, ) AV + /G (6, D) dV = /6 oo,

where v = v5g|St is the Clifford multiplication of the outer unit normal to 0G.

THEOREM 1.5 (Cauchy’s integral theorem). Let ¢ € C®(G,S™) be a zero
mode spinor for D. Then we have

/ (v, Y~ (™R do = 0,
oG

for any (m, 1, k). In particular
(1-6-3) / ypdo = 0.
aG

Proor. The first assertion is a direct consequence of Stokes’ formula and
Proposition 1.4. The second assertion follows if we take, in particular,

-1 0
—-(0,0,1) _ —(0,0,0) _
" ( 0 > and 9 (1) -

LEMMA 1.6. Let ¢ € C®(G,S*). If Dy = 0 and if the boundary trace
©|0G =0 then ¢ = 0.

In fact if Dy = 0 then |p| = +/{p, ¥) is a subharmonic function on G hence
|| takes its maximum on the boundary. We know that the Dirac operator has the
unique continuation property, [B-W].

ProposiTION 1.7. Let p € C®(G,S*). If Do =0 and Di(yyp) = 0, then
p=0.

Proor. From Stokes’ formula we have

0= /(Dcp,w>dV+/(<p,DTw>dV=/ (Yo, vp) do
G G oG

= /6 (o) don
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Hence ¢ = 0 on the boundary. From the lemma it follows that ¢ = 0.
1.7. The following theorem is proved by Y. Homma [Ho].

TusoreMm 1.8. L2(B,ST) is decomposed by the two-sided action of SU(2)x
SU(2) = Spin(4) into S°°°___ Hp, where Hap = Yoo SSpdl CoEmb5) s an
(m 4+ 1)(m + 2) dimensional irreducible representation with hzghest weight T

The left action of o¢, i = 1,2, 3, on an even spinor is given by the derivation
( Lot) = 7;, while the right action is given by dR(@ai) + @Ui = —0; +

£ . These actions commute with @. Put

\/—1T=\/——163——%US, E:e___V;l(a?— —1o'), F=¢e- V;1(02+\/—101).

Then we have the following relations:

SIIT bk — (m; 1_ k) SR Ty b — (m _ _é_)(ﬁ(m,l,k)
Egmilk) — glmlk+1) SHmbk) = _(m — [)pimlH1LE)

Fmbk) — _k(m — k4 2)g(mbk=1) Famik) _ jg(mi-1k)

VAT = (- L)), Tggmmt) = (T2 ) gmtmii),
Ep—(mlk) — (m — [)g—(ml+Lh), S (mbik) = g=(mLk+1),

Fop=(mibk) — _jg—(mi-1k), 5= (mbk) = _k(m — k + 2)¢p— (mbh=1)

k=0,1,....m+1,1=0,1,....,m
This gives a representation of Spin(4) and the highest weight vector is plmmmtl)

2. Cauchy’s integral formula

2.1. The Cauchy kernel was defined as Clifford multiplication of the radial
derivative of the Newton kernel in Section 11.4 of [B-D-S]. So we put, for any pair
(z,¢) such that ¢ # z,

(2-1-1) K= = ! [370(4 2) : C®(C? 8) — C>(C?, 8).
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K has the following matrix representation.
0 Kt
o= )
1 1 G-z Q-2
(12)  Kl(z0)= (-2 = 5 ( T ) ,
I¢ — 2| C—2*\-C+2 ¢,-=

1
K(z,() = mV+(C—z)-

ProprosiTiON 2.1.

(2'1'3) DzKT(za C) = O’ DlK(za C) =0

As was mentioned in the introduction the Cauchy’s integral formula for a zero
mode spinor has been obtained by many authors both in Clifford analysis and in
spinor analysis. Our approach is to specialize it to the irreducible spinor bundles.
It has an advantage to make clear the spaces where the Cauchy transformation
acts, and it is a necessary procedure for treating the Dirac equation as you will see
in the next paragraph.

TueoreM 2.2 (Integral formula). Let G be a domain in C* and let ¢ €
C>(G, St). Then we have

1
0(2) = —5= | K'(2,0)Dp(¢)aV (¢)
(2-1-4) 2 /G

1
+ o | KOG, €6

where v = vyag|St is Clifford multiplication of the outer unit normal to 0G and o
is the surface measure on 0G.

Proor. From the Stokes’ formula and Proposition 2.1 we have
/ K1z 0DeOdV(©O) = [ K@ 00e)0do(0)
Gn{l¢c—2Ize} e
- [ K00 0)
On | — 2| = € we have

KT(5,0(0) = % 7-(C = 2175.(0) = 5 Td.
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The formula follows from the fact;

lim — / e ©(Q)do () = 2m2¢p(z).

e—0 63

ProposiTioN 2.3 (Cauchy’s integral formula). Let G be a domain in C2
with a smooth boundary 8G and let ¢ € C®(G, S*) be such that Dy = 0. Then
we have

(2-1:5) 0(2) = 53 /8 KO0, <G

We see from Corollary 3.2 of the next section that an even zero mode spinor
¢ that is square integrable away from a compact set satisfies the decay condition
lo| ~ O(#) as |z| — oo. Hence we have the following integral formula on an
exterior domain.

ProposiTioN 2.4. Let G = C?\K be an exterior domain with smooth bound-
ary and let p € C®(G,8T) N L*(G, ST) be such that Dy = 0. Then we have

(2-1-6) ~53 / K'(z,O)(vp)(Q)da(¢), z€G.

2.2. Local solution of Dy =1
We denote the inner product of two spinors by

(<P1,<P2)=/ (¢1,p2)dV  for <P1,<P2€C°°(Cz,5)~
2

For ¢ € C°(C?, S*) we put

Ko(z) = | K(z,¢)e(¢)dV(()

C2
Klo(z) = . K'(2,)p(Q)dV (C).

These are well defined out of Supp ¢, and are of zero mode.

LEMMA 2.5.

(2-2-1) (o, KT9) = (K, ),

for ¢ € CX(C%,5%) and 4 € CX(C?,57).
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In fact

(p(2),7- (€ = 2)¥(Q)) = (v+(C — 2)(2), ¥(O))

is bounded by a constant that depends only on ¢ and 1. The lemma follows from
the formula (2-1-2).

THEOREM 2.6. Given a 1) € C(C?,57), there is a solution ¢ € C*(C?, ST)
of the equation

(2-2-2) Dp(z) = (2),  z€C2
Proor. First we note the following integral formula for an odd spinor ¢ €
C*>(C?,57), that is similar to (2-1-4):
(2-2-3)
o) = ~57 [ K2 ODROWV Q)+ 35 | K=00@)Qdo(0), 26,

where v means vsg|S~. In particular
1 1
- = _ f
(2-2-4) 0a) = =33 KD'(e) = —55 [ K(:ODTe(av(C)

for a ¢ € C°(C?,87). Now let 1 € C2(C?,S7) and put ¢ = 55 KT1). We have
¢ € C=(C?, St). From Stokes’ formula we have, for any ¢ € C°(C?,57),

1
(D¢, ¢) = —(#, D'p) = — 5 (K", D'y),

which is equal to —z25 (¢, KD'¢p) from the above lemma. By virtue of (2-2-4) we
have

(D4, 0) = 55, KDY p) = (9,9).

The assertion is proved.

3. Expansion of the Cauchy kernel

3.1. Bergman-Szeg6 type integral

We shall deal with the following problem.

Given an even spinor on a sphere, can we extend it to the interior (resp.
exterior) of the ball as a zero mode spinor?

This problem was discussed in [K2]. Here we shall present it in a form modified
to suit our situation.

We put

Ec)={2€C?% |z—¢| <}, B.(c)={2€C?% |z—c|=7}.
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The results we have developed in Section 1 on the unit ball and on its boundary
are also valid on E,(c) and on B, (c) if we translate the quantities according to the
variable change z — 2=¢. The surface measure of B,(c) is given by do = r®dos.

The tangential Dirac operator on B;.(c) becomes

( ) p r —v/=185(z — ¢) Eéz—c)
3-1-1 e
en = [z =l —e(z—¢) vV—10(z — ¢)
where €(z — ¢) = —(2z — 02)6%1 +(z1 = cl)aih, ete.
The eigenvalues of @, are %, ~243, n = 0,1, ... . The eigenspinors pEmLE)

form a complete orthogonal system in L?(B,(c), S*). The normalized basis vectors
are

1 1
(3-1-2) M¢i(m»l’k> = ¥+ pE(milk),

Let Hy be the closed subspaces of L?(B,(c),ST) spanned by the eigenvectors

qﬁgznrl) *) (resp. qﬁ(c;nlk)). Let H*(E,.(c),ST) denote the Sobolev space of even

spinors on E,(c) with derivatives up to order s in L?, and similarly for
H?*(B,(c),ST). Let by be the trace on the boundary from the interior and from
the exterior respectively:

by : HY(E,(c),S*) — H(B,(c),S™),

(3-1-3)
b_: HY(C?\ Ex(c),ST) — HZ(B,(c), ™).

We see from (1-3-2) that ¢>(m LE) is in HY(E,(c), S*), while ¢(‘C%’l’k) lies in H*(C?\
Ey(c), 87).

The Bergman-Szegt type integrals which give the inverse of b are defined as
follows. For a ¢ € H, we define

1 Lk Lk
(3-1-4) Arp() =55 3 (0,000 ) S5, - <
m,l,k
Similarly, for a ¢ € H_ we define
(3-1-5) A”p(2) 27r2 Z ( qﬁ(c(:nlk)) qb(c(;"lk)(z), |z —c| > 7.
m7 7

Here the convergence is taken in the sense of norm in each Sobolev space, but, since
‘q&t(;n oh k)[ are subharmonic functions on C? \ {c} and since

0 m,l,k) |2 0 —(m,l,k) 2
5l >0, Sec Y
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each |¢i(m b k)IQ takes its maximum on B, (c), the series A% (resp. A~¢) converges
umformly for |z —c| <7 (resp. for |z —c| > 7).
Let
N(E:(0) = {¢ € H'(E:(c), %); Dip =0

N(C*\ Er(c = {¢ € H(C*\ E,(c),S); Dy =0}.
TueoREM 3.1. The boundary trace gives the following isomorphisms;

by N(En(c) — Hy N H(B,(c),S%),

(3-1-6) .
b_: N(C?*\ E.(c)) — H_NHZ(B,(c),S).

The inverses are given by A* respectively.
For the proof see Theorem 5.10 of [K-2].

The similar formulae for the space of square integrable monogenic functions
over Liapunov surfaces was obtained in [G-Sp] and that over subdomains of spheres
and hyperbolae in [L-M-Q, R].

From (1-3-2) we have the following estimate at infinity.

CoROLLARY 3.2. Let ¢ € N(C?\ E(c)). Then
(317 o@~0 (), =

We shall now rewrite the expansion of AT in the series of qﬁi(mlk) and

put the dependence on 7 into the coefficients, which is a necessary procedure for
obtaining the Laurent expansion in the next section, where we will show that the
coefficients are also independent of r.

LEmMMA 3.3. Let pE(MLE) e the odd spinors given in (1-5-1).
(1) For ¢ € Hy, we have

Atp(z) = 3 CP iR (2 —¢), |z - <,

m,l,k
with
(3-1-8) Ot®) = o [ (i (C= 9p(Q), $IP(C - ) o(do).

B;(c)

(2) For v € H_, we have

=Y CLmR g-mB(z — o), |zl 2,
m,l,k
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with

(3-19) ol = 5% i 7HE () P~ MEE(¢ - ) o(dO).

Proor. Let ¢ € Hy. From (3-1-4) and (3-1-5) we have respectively:
1
AFp(z) = 55 3 ((Q), ¢ = | FEmHIGELR (¢ — ) =R (2 — ),
2m? m,l,k

By (1-5-1) we can rewrite the coefficients as follows:

53(0() I¢ = el TG )

1 m
= 5 (1 (C = (O =R — ) = GERY.

The lemma is proved.

3.2. The Bergman-Szegd kernel and the Cauchy kernel
Let A} (z,¢) be the kernel function of A™;

(3-2-1) A (z) = /B A0, 2 e B

From Subsections 2.1 and 3.1 we know that both AY(z,¢) and KT(z,()-v4(¢) give
the extension of spinors in H, to zero mode spinors on |z —¢| < r. In fact we shall
find that the two kernels coincide.

TueEOREM 3.4 (1). For |(—c|=7r and |2z —c| < it holds that

(322 20 A0 = K1(5,0) 74 ((~0) = (7= 1= (C = 2) -1 (C— o)

Proor. We suppose ¢ = 0 and r = 1 for simplicity. A slight modification
yields the general case. Let |¢| = 1 and |2| < 1. In the following we denote afal,
for a = (a1, az), by a»?, We have:

m+1 m
2m? A% (2,¢) = Z Z PR (C) @ (mhk) (2)
m k=0 [=0
N Zm 1i (m+1—k)!
onllwnr S kN (m — D)}
kglg—lz(lym—l) ke’;_lz(l’m_l) _Elgz(l,m-l) kei_lz(lvm_l)
_kglg—l"(l,m~5) efz(l’m_l) E,,gz(z,m—z) €1§Z(z,m—5)
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‘We shall write
. ALD A(02)
A0 = qen 402

We start, from A(2),

m+l m

(2,2) — (m+1-k)! tm= ek o (bm=)
A Zo — k:'l'(m—~l &d

herez-zzzl-zl +Cy - 22
Let By, be the k-th summand. We have

~ 1
B = Y+ 0E " = i

_ v oam . CZ gz - Gal?
Br= 2 eI = e T

and

B, = Z (_m_*];_!l__f_]fl(cez)( 2™
r=k—1

_ (__1)k—1

= %k -2

Since the result is differentiated we do not care which branch of the logarithm we
take. In fact, the summand By, for & > 2 becomes as follows;

(Eee) {1 ~C-2)F2log(1 = (- 2)}, for k>2.

b ek gplaz = Gal’ e
By = (1—Z'Z)Z(C VE— 2k 7.0 (S
+§ﬁ(—D%3?%%%@a“2
— Zh(k— 1G22 —G2l® o ve-s
k:(k: 1)(k-2) 7.2 (¢ 2)* 3 +

Therefore we have

A(2 2) _. Z Z)}c ZZk’Clz2 221, (C -'z—)k_l

¢-2)3
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+Z%k )M(g 7)k—2
kE=2""

1 z)*
_ 1 1 Gz~ Gal? 2
(1-¢-2)2(1-¢-%) (1-¢-2)? (1-¢-2)?
G122 — Coza |* 3 o
B T (s
(1-¢-2)

(1 =Coz—C 4 CPlR)”

In the same way we have:

m+1l m
1—k)' _ (L,m—1)
AL (m + kk 15 kk 1, (L,m—1l)
_ 1t
- - _ 2
(1=C-2=C-Z+¢?2?)
& (m+1 - k) —(t,m—~1)
SEEDIDII. e (e A R
m k=0
- —G22 + (21
(1-Ce 2= C 7+[¢2l212)*
m+l m m+1 ]{7) a )
2,1) _ - _k—1\F(lm— kv (Lm—1
ABD =7 2 ZW—*TUCQ ) CE
m =0 =0

Gz2 — (221
— _ PR
(1=C-z=¢ z2+¢?2?)
Finally we have obtained the following expression for the kernel A™(z, ():
1-¢ 2 —C122+4221>
Gz = G221 1-¢-z

1
27r2A+(z,C): — (
(1=C 2= ¢ -2+ (¢2l22)"
1 G—2z1 (-2
ER WA

for |¢| =1 and |2| < 1.

> 7+(0) = K(2,0) - 1+(0),

Let A7 (z,¢) be the kernel function of A~;

(3-2-3) A=(z) = /B L AE0H00O, 2 CNE)
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TueorEM 3.4 (2). For |( —c|=r and |z —c| > r it holds that

(3-2-4) 212 A”(2,0) = ~K'(,0) - 1+(C — o).

Proor. This time also we suppose ¢ =0 and r = 1. Let |[{| =1 and |z| > 1.

m+l m
272 A7 (2,¢) = Z Z¢—(m,i,k)(c) ®¢—(m,L,k)(z)
m k=0 =0
_Zm 1§:(m+1_k)' .
m k=0 =0 KN (m — 1) |z]2m+e

Ko e

5L (GF Q) 6 (2 f(2)) 3§<<1m>6§<z2f<z»)
SEGTO) @) BTN EEf())

where we have put f(z) = Z4 2z

Let d = (6.0,)~" and g = f(¢) f(2). Then 27? A~ (z,() is written as:

omA 1=K g s p’dg —pdcdg
e | 7 . A _ .

Each entry is calculated as before. The sum of the series in (2,2) component, for
example, becomes

m+l m

S35 ) ()™

m k=0 [=0
_ (21 - (C1z1 + (2%2))
|2] [2 = ¢]*

‘We have thus
1 21— 22— (2
2m? A~ = —— _ >
™ (Za C) lz _ C|4 v (Z)/Y-i- (Z) (__22 + Cz Z — C1> '7+(C)
= _KT(Z: C)’Y+(C)
Theorem is proved.

From Propositions 2.3, 2.4, and Theorem 3.4 we have the following theorem
on a Taylor expansion.
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THEOREM 3.5 (Taylor expansion).
(1)  Let ¢ € C(G, S™) be a zero mode spinor on a domain G and let ¢ € G.
Then we have an expansion

p(z) = ) COmR gtz — o),

m,l,k

in a ball {|z —c| <r} C G, where C™H%) s given by

clmh) = 2_71r2 9P Yt (¢ — ) o(dC)-

»(c

(2) Let p € N(C?\ K,ST) be a zero mode spinor on the compliment of a
compact set K C {|z| < r}. Then we have an expansion

o(z) = Z ¢~ (mil.k) ¢—(m,l,k)(z),

m,l,k
on {|z| > r}, where

G imbl) = 5% /Brm(ocp(o, P~ ER(Q)) o (dQ).

The expansion of Cauchy kernel and a Taylor expansion as well as the Laurent
expansion in R was obtained earlier by Delanghe and Sudbery using their basis
of spherical monogenics mentionned at the end of Section 1.5. See, for example,
Sections 11 and 12 of [B-D-F], Chapter II of [D-S-S¢] and Theorems 10 and 11 of
[S]. Taylor and Laurent series of monogenic functions on a spherical domain were
studied in [So-2, V-L].

4,  Meromorphic spinors and their residues

4.1. Expansion of a zero mode spinor on an annulus in a series of
d)i(m,l,k)

THEOREM 4.1. Let ¢ be a smooth even spinor on 0 <7 < |z—¢|]< R < o0
such that Dy = 0. Then we have the expansion

0(2) = > Clmury ¢ (2 —¢)

m,l,k

+ D Comupyd™ ™M (z—c), r<lz—c <R
m,l,k

(4-1-1)
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The coefficients are uniquely determined by (m,l, k) and ¢, and are given by

(4-1-2) Caimik) = 517-5/3 ( )(7+(C - )p(¢), P =™IRNC — ¢)) o(dC)

for any p such that r < p < R.

Proor. Let s, t be such that r < s <t < R. From the integration formula
(Proposition 2.3) applied to the domain s < |z — ¢| < t we have

o(2) = 53 K1(z,O)va (¢ = 0)p({)a(dC)

53 BS(C)KT(z,C)%(C—C)w(C)d(dC), s<|z—c <t

It follows from Theorem 3.4 (1) and (2) that;
m,l,k —(m,L,k)
(p(Z) _ Z C((c,t) )¢(m,l,k)(z _ C) + z O(c,(:; )¢ (m,l,k)(z _ C).
m7l’k m,l,k

Now from Lemma 3.3 C((Zn’t)l ) is given by

m 1 ”
O™ =53 [ 416~ 00, #P (¢~ ) olat)

But, since Dy = 0 and DTpi™ ) = 0onr < |¢ — ¢| < R, we find that it is

independent of t. C(, (g’l’k) is also independent of s.

4.2. Given a zero mode spinor ¢ on 0 < |z —¢| < 7;

pe COO(ET(C)\{C}3S+)a Dy =0.
In the expansion of ¢ in (4-1-1) the second part
Z C(m i) P (™bF)
m,l,k
is called the principal part of ¢ at c.

DeriNITION. Let G be a domain in C? and let £ be a discrete subset of G.
A zero mode spinor ¢ on G \ E is said to be meromorphic on G if its principal part
has only finitely many terms at every point of E. A point of E is called a pole of

.
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Let ¢ be a meromorphic spinor on a domain & and let

> Copmpry by ™R

m,l,k

be its principal part at a point ¢ € G. We call the vector

-C_
(4_2_1) (01011) ,
C_(0,0,0)

the residue at z = ¢ of ¢ and we denote it by

(4-2-2) Res ¢(c).
Res ¢(c) are the coefficients of the term of order O( -tz ).

[z~c[?

ProprosiTIiON 4.2.

(4-2-3) Resp(c) = 55 /B A= pe(),

for any sufficiently small ¢ > 0.

Proor. Since

P00, o) = (g) and ¢~ @0 (z —¢) = (”;)1) )

we have
1 _
C_(0,0,0) = 5}3/3 , )('y+(z — &)p(2), 000 (7 — ¢)) o(dz)
1
= 5 [, (== Ohphaeli).
Similarly

1
C_001) = —5%3/3 , )(’Y+(Z —c)pho(dz).

Here (¢); is the j-th component of the spinor ¢.

THEOREM 4.3. Let ¢ be a meromorphic spinor on a domain G’ C C? and
let E = {p1,pa,...,0n} be the poles of p. Suppose E is contained in a relatively
compact subdomain G C G' with smooth boundary 8G. Then we have

1

(4-2-4) 577 (oo 0o = 3" Resy(r).
=1
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ReEMARK. Residue theorem for (left) monogenic functions at the singular
point were given in Theorem 12.4.3 of [B-D-S]. Since their basis of expansion,
(1-5-5) and (1-5-6), is different from ours their definition and ours are different,
but the values of both residues of a meromorphic spinor coincide of course. On the
other hand the residue of monogenic forms discussed in [D-S-S¢, S¢] is related to
the higher dimensional analogue of 0 operator and residue formula there was given
by cohomological formula.

4.3. Here we study the effect of conformal transformations on the system
{pEmLRN . Let f : U — R* be a conformal transformation. Then the map f
induces a Spin(4)-equivariant map f, of Spin(4)-principal bundles and it yields a
bundle isometry f' = A(f,) : S — S’ of the associated spinor bundles. The Dirac
operator is conformally covariant, that is, if D’ is the Dirac operator corresponding
to the metric ¢/; f*g’ = e*“g, then

(4-3-1) to=F-D.-F7',

where w is a smooth function on U and F = e~ 7% f/, [Hi] [L-M].

Under the conformal transformations the vector fields 6y, € and € do not change
their forms, while the radial vector field -aﬁn- does not change its form under the
translations, orthogonal transformations and dilations, but under Kelvin inversion
it changes the sign. For Kelvin inversion, we have

0 0 3
F-— Fl'=— —-|uwl
on Onw 2| |
Each vector field 8y, € and € annhilates the conformal factor u.
We note also that the chiral matrix changes according to

(f) Iy f =emy

Now let U be a domain containing the disk {|z| < 1}. From what we have
verified above we can verify

(4-3-2) Py =EF . F P =2f3.(f)"", on |z|=1.

Hence on the sphere f({|z| = 1}) C f(U) the eigenvalues of § are —242, %,
n = 0,+1,...if f is orientation preserving, while they changes to %’3, —G, M=
0,41,... if f is orientation reversing. The corresponding eigenspinors become

fE(mbE) that are extended as zero mode spinors to R\ f(0) by FgE(mtk).
In particular by a coordinate change T' € SO(4) we have the same eigenvalues of
@ and the eigenspinors are given by ¢*(™b%) o T, and our theory is independent
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of the chosen complex structure C2 ~ R*. By the transformation f(z) = ¢+ rz,
r > 0, we find that the eigenspinors on |z — ¢| = r are given by

ﬁ(m+%)¢i(m,l,k)(z — ).

We have used it in Section 3.1. We shall see soon the effect of inversion: f(z) = %
Having verified the covariance of our theory on R* under conformal transformations
we can extend it to a theory on a manifold which is locally R* and patched together
by conformal transformations, that is, on a conformally flat 4-manifold.

Now we shall see the theory on S* in more detail and discuss the expansion.
S* is obtained by patching up two copies of C? together by the inversion w =
v(2) = fz. We shall denote these two local coordinates by C? and C2. v has the
conformal weight u = —log|z|%. The surface measure on {|w| = £} = {|z| = R}
changes according to o(dw) = —gs0(dz).

The even (resp. odd) spinor bundle S* on M is obtained by the identification

(433)  C*x A% 3 (5,6 — (w=1v(2), £w) = u| 2E(vw)) € G x AT,

Thus an even spinor ¢ on a subset U of M is a pair of ¢ € C°(U NC?% x A*) and
¢ € C®(UNC? x A™) such that ¢(w) = [z[3(v4 - $)(2) for w = v(z).

The Cauchy integral on C2 has the same matrix representation as that on C2,
for example,

~ 1 1 T W1 —N2+ ws
4-34) EK'(wn)=c—Fsr-Mm-w)=——7|_ _ :
|’I7~*’LU| |77-—'LU| Mo — W2 T — Wi

We can verify by a direct calculation that

(4-3-5) K¢ =Kt

PrOPOSITION 4.4. Let G be a domain in C2 that is a neighborhood of 0.
Let p € C*(G,ST) = C®(G,A™). We suppose that D@ = 0. Then we have the
integral representation

1

(436 Pw) =55 [ Kiwm)(ap)mo(n).

Now we shall investigate the Laurent expansion on a neighborhood of the point
at infinity. First we note that the following relations hold:
a(m,l,k) (w) = d)(m,L,k)(w), we 02 \ 0,

4-3-7 . &
( ) ¢-—(m,l,k) (w) — 1/)—~(m,l,k)<w), w e Cz \ 0>
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where (™) ig given by the formula (1-5-1). This implies qb (mbE) o O(Jw|™).
Hence we define, if m > 1, ¢~(™bF) to be 0 at w = 0, while ¢~ (00k) L = 0,1,
being constants, are extended to w = 0 naturally.

From (4-3-7) and (1-5-4) we have

D¢~ (w) =0,

(4-3-8 I
) D ¢™bR) () =0, w # 0.

The relations (4-3-5), (4-3-7) and Theorem 3.4 yield the following:
ProrosITION 4.5.

m+1 m

(4-3-9) I/(\'J’(w,n) v+ (n) = om2 A~ (w,n) = Z Z Z‘ﬂ”(m’l’k)(n) ® ¢~ (™R (),

m k=0 I=0
for |n| = % and |w| < %. Similarly

m+1l m

(4-3-10) Bl w,mye(m) =3 D03 pmbR) (n) @ 0 (w),

m k=0 =0

for |nl = % and |w| > %

1
R
E

Let E.(0) = {|lw| < r} C C? and let

(4311)  N(E.(0) = {¢ € H\(E,(0),5%) = H'(E(0),A7); D$ =0}.

Then we have an obvious isomorphism:

(4-3-12) N(C?\ ER(0)) =~ N'(EL(0)).

By this isomorphism we see that the assertion of Proposition 4.4 is the same as
that of Proposition 2.4.

Let ¢ be a zero mode spinor on 0 < |w| < —1%. We can prove by the same
argument as in 4.1 the Laurent expansion of ¢ around w = 0. By the isomorphism
(4-3-12) it translates to the Laurent expansion around the point at infinity of CcZ

THEOREM 4.6. Let ¢ be a smooth even spinor on {z; R < |z|}. Suppose that
Do = 0. Then we have the following ezpansion at infinity:

(4313)
Z B (mpp) ¢ (2) + Z Bl ¢~ ™ (2), R <|2l.

(m,l,k) (m,l,k)
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The coefficients are given by

1

(4-3-14) Brtmug) = —=—
F( ) 271'2 B,(0)

(ve0(2), pF ™08 (2)) do(2)

1
for any p such that p > 5.

4.4. Let v be a zero mode spinor on |z| > R. We say that ¢ is meromorphic
at infinity if, in its Laurent expansion at infinity, there are only finitely many
B_(m,k)’s that do not vanish. We call the vector

B
(4_4_1) (0)071) ,
—B0,0,0)

the residue at infinity of ¢ and we denote it by
(4-4-2) Res ¢(00).
Res ¢(00) is the coefficients of the term of order O(|z|?).

LEMMmA 4.7.

1
(4-4-3) Res p(o0) = —=— vro(2)do(z)  for any p > R.
21 JB,(0)

Finally we have the residue theorem.

THEOREM 4.8. Let ¢ be a meromorphic spinor on S* with poles at the points
C1, €2y . .. Cm € 8. Then

(4-4-4) i Resp(cy) = 0.
k=1

The theorem follows from (4-2-3) and (4-4-3).

5. Residue theorem on a conformally flat manifold

5.1. Conformally flat manifolds

Let M be ariemannian 4-manifold with conformally flat metric. A Riemannian
manifold is conformally flat if and only if its Weyl tensor vanishes. We know that
when M is compact and simply connected M is conformally equivalent to S%.

We suppose moreover that M has a spin structure and we fix it.
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There exists a system of coordinate neighborhoods (Uy, x) in M such that
each Gy = xA(U) is a domain in C? with local coordinate {27,23} and such that
the transition function fu\ = X,uXXl is a conformal transformation;

(5-1-1) (A4 dZ + debdzy) = > (d27dz) + deydzy)

where ) is a smooth function on G, N G.

A meromorphic spinor on M is, by definition, a smooth spinor ¢ on M\ E, E
being a discrete subset, such that, for each A, ¢ = (x»)’¢ is a meromorphic spinor
on Gy C C? with poles at Gy N xA(E). This is equivalent to say that the family
of meromorphic spinors ¢, on Gy such that ¢, = (fux) @ defines a meromorphic
spinor on M.

Let ¢ be a meromorphic spinor with a pole at z € G C C2%2 Let f be a
conformal transformation defined on G. If f is either a translation, an orthogonal
transformation or a dilation, the coefficients of the Laurent expansion at f(z) of
f'v do not change. While by the inversion which sends z to the point at infinity,
the coefficient B (m,1,k) of the expansion of ' at infinity is equal to the minus of
C't(m,1,k) s we have seen in 4.3 and 4.4. Thus, for a meromorphic spinor on M, the
order of pole and the residue are defined independently of the local coordinates.

THEOREM 5.1. Suppose M is compact and let E = {c¢;}; be a finite set of
points. We suppose that there exist spinors ¥ € C*°(M,S7), k = 0,1, such that
Dty = 0 and such that 1y = w;(o’o’k) in a neighborhood of ¢; for any ¢; € E. Let
¢ be a meromorphic spinor with poles at E. Then

(5-1-2) > Resep(ci) =0.

Proor. Let B; be a small ball in U(c;).
The k-th component of

1 1
Res(ci) = 573/33 (YoB; @)k do = 37 /613 (YoB; 0, Yr) do,

for k =0, 1. Stokes’ formula yields that

1
2; W/(agi<783i%wk> do = 0.

Therefore

Z Resp(c;) =0.
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REMARK. Let N be the sheaf (of linear spaces) of germs of zero mode odd
spinors. Let Lz be the subsheaf of those spinors that vanish at . We have the
following short exact sequence of sheaves:

0—-)[:15 ————*NT——M/\/T/[:E—>0.

If F is a point ¢ then L, is the sheaf of linear spaces spanned by the germs . (m’l’k),

m > 1 and NT/L, is generated by wC—(O,O,k), k = 0,1. The hypothesis in Theo-
rem 5.1 can be stated as

(5-1-3) HY M, LE) =0.

In our forthcoming paper, [K-3], we shall introduce, for a meromorphic spinor on
M, a concept analogous to a divisor of a meromorphic function on a Riemann
surface, and study cohomology groups of zero mode spinors with poles and zeros
at a given divisor.
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