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Cohomology Groups of Harmonic Spinors on
Conformally Flat Manifolds

Tosiaki Kori

Abstract. We shall investigate various properties of the sheaf of harmonic
spinors N on C2 and, more generally, on conformally flat spin 4-manifolds.
We prove the Runge approximation theorem on C2, and the vanishing of
cohomologies; H1(C2,N ) = 0 and H1(S4,N ) = 0. We shall introduce a
concept of divisors of meromorphic spinors on a compact conformally flat
spin 4-manifold , and give an analogy of Riemann-Roch theorem.
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1. Introduction

This is a continuation of our previous research on harmonic spinors on conformally
flat spin 4-manifolds, [8], [9]. Let (M,S) be a 4-dimensional Riemannian manifold
with a compatible spin structure, S = S+ ⊕ S−, S± being the two spin bundles
associated to two half-spin representations of Spin(4). Let D : S+ −→ S− be
the (half) Dirac operator. A spinor ϕ ∈ C∞(S+) is called a harmonic spinor if
Dϕ = 0. Let N be the sheaf of harmonic spinors. Since D is an elliptic operator,
we have the exact sequence

0 −→ N −→ S+ D−→ S− −→ 0, (1.1)

where S± is the sheaf of even (resp. odd) spinors. Therefore

Hp(M,N ) = 0 for p ≥ 2,
H1(M,N ) = coker{D;C∞(M,S+) −→ C∞(M,S−)}, (1.2)
H0(M,N ) = ker{D;C∞(M,S+) −→ C∞(M,S−)}.
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H1(M,N ) and H0(M,N ) are endowed with the structure of Frechet spaces. When
M is compact these are finite dimensional, and we have

dimH0(M,N )− dimH1(M,N ) = index(D) = − 1
24
p1(M), (1.3)

from the Atiyah-Singer index theorem, where p1(M) is the first Pontryagin number
of the 4-manifold M .

We are interested in the vanishing of H1(M,N ). We shall prove it if M is an
open subset of C2 and for M = S4. We conjecture the vanishing of H1(M,N ) for
any non-compact conformally flat spin 4-manifold.

Now we shall explain the contents of each sections After the introduction of
ingredients on spinor analysis that are studied in [8], we shall prove in Section
3 the Runge approximation theorem, that is, any harmonic spinor on a compact
subset K of a domain G ⊂ C2 such that G \ K has no relatively compact con-
nected component can be approximated uniformly on K by harmonic spinors on
G. Several Runge type theorems for Clifford algebra valued functions on a domain
in Rn, as well as for Clifford modules, were proved earlier in [2, 3, 11]. We think
our argument, which is close to that by Hörmander [7], is worth to be presented.
In 3.2 we prove that the Dirac equation Dϕ = ψ has a solution on any open subset
G of C2. Hence we have

H1(G,N ) = 0. (1.4)

We can verify the covariance of our theory under conformal transformations
on R4, thus we can extend it to a conformally flat 4-manifold. In particular the
above stated properties are independent of the complex structure on R4. In Sec-
tion 4 we shall deal with the cohomology of N on a conformally flat 4-manifold
M . We shall see that the cohomology group H1(M,N ) is calculated by a Leray
covering. Thus we see that the well known argument to have the classical result
H1(P 1(C),O) = 0 is valid to prove

H1(S4,N ) = 0. (1.5)

We shall prove that the restriction map

H1(G′,N ) −→ H1(G,N )

has a finite dimensional image for a relatively compact open subset G of an open
subset G′ ⊂M . This implies the existence of a non-trivial meromorphic spinor on
a relatively compact open subset of M .

Our results should extend to even dimensional conformally flat manifolds. In
fact we have already the Runge approximation theorem on a domain in Rn as was
proved earlier in [3], so if we adopted it we could in principle obtain the results in
Section 4 also on a domain in R2n, but it would be very complicated to write it
down because of the 2n components of spinors.

In Section 5 we shall study the cohomology groups of meromorphic spinors,
that is, harmonic spinors with singularity, on compact conformally flat 4-manifolds.
We develop a divisor theory for meromorphic spinors. But, because we have no
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product operation on spinors, this is a linear analogy of classical divisors of mero-
morphic functions. We shall show a Riemann-Roch type theorem for the cohomo-
logical dimensions of meromorphic spinors with prescribed divisor. More precisely,
let E be a divisor on a compact conformally flat manifold M and let LE be the
sheaf of meromorphic spinors having the poles at E of order less than degE. Then
we have

dimH0(M,LE)− dimH1(M,LE) = degE, (1.6)
Hp(M,LE) = 0 for p ≥ 2. (1.7)

2. Preliminaries on the Dirac operator and the Cauchy kernel

Here we shall summarize some ingredients of spinor analysis that are now well
known, [1, 2, 10].

2.1. Dirac operator and harmonic spinors

Let ∆ = ∆+⊕∆− be an irreducible complex representation of the Clifford algebra
Clif(R4); Clif(R4) ⊗ C = End(∆). ∆ decomposes to irreducible representations
∆± of Spin(4), each of which has dim ∆± = 2. Let S = R4 × ∆ be the spinor
bundle on R4. The corresponding bundle S+ ( resp. S− ) is called even (resp. odd)
spinor bundle.

We shall choose complex coordinates and look at R4 � C2. Our theory does
not depend on the complex structure but on the conformal structure on the man-
ifold. The complex coordinates description is adopted for convenience of notation,
though this notation allows us to see things in perspective, for example, our formu-
las for eigenspinors of the Dirac operator fit for the SU(2) representation theory.

Given a smooth boundary ∂G of a region G we shall denote by γ∂G the
Clifford multiplication of the outer unit normal on ∂G. We shall abbreviate it as
γ if it is obvious which boundary we are considering. γ∂G changes the chirality:

γ∂G : S+ ⊕ S− −→ S− ⊕ S+; γ2
∂G = 1. (2.1)

Let γ0 denote the Clifford multiplication of the radial vector ∂
∂n , the unit

normal to the unit sphere. The chiral decomposition of γ0 becomes

γ0 =
(

0 γ−
γ+ 0

)
:
S+

⊕
S−

−→
S+

⊕
S−

. (2.2)

The Dirac operator is defined by

D = c ◦ d, (2.3)

where d : S −→ S ⊗ T ∗C2 � S ⊗ TC2 is the exterior differentiation and c : S ⊗
TC2 −→ S is the bundle homomorphism coming from the Clifford multiplication.
D is an elliptic operator.
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By means of the decomposition S = S+ ⊕ S−, the Dirac operator is decom-
posed into chiral components:

D =
(

0 D†

D 0

)
: C∞ (

C2, S+ ⊕ S−) −→ C∞ (
C2, S+ ⊕ S−)

. (2.4)

An even (resp. odd) spinor ϕ is called harmonic spinor if Dϕ = 0 (resp.
D†ϕ = 0). We denote by N (U) (resp. N †(U)) the set of even (resp. odd) harmonic
spinors on an open set U .

Remark 2.1. In [9] we called ϕ ∈ N (M) a zero mode spinor on M . The reason
why we preferred it was that, on a noncompact manifold M , the condition of
harmonicity, D†Dϕ = 0, is not equivalent to Dϕ = 0.

The following fundamental properties of harmonic spinors are well known [1].

Theorem 2.2. A harmonic spinor on a connected open set vanishes identically if
it vanishes on an open subset.

Theorem 2.3. If U and V are domains in C2 such that V is compact in U , then
the restriction map rU

V : N (U) −→ N (V ) is compact.

The following Stokes’ formula holds for φ ∈ C∞(G,S+) and ψ ∈ C∞(G,S−):∫
G

< Dφ,ψ > dV +
∫

G

< φ,D†ψ > dV =
∫

∂G

< γ φ, ψ > dσ. (2.5)

We shall denote in the sequel

(ϕ1, ϕ2) =
∫

C2
< ϕ1, ϕ2 > dV, for ϕ1, ϕ2 ∈ C∞(C2, S). (2.6)

2.2. Cauchy integral formula

The Cauchy kernel is the Clifford multiplication of the radial component of the
gradient of the Newton kernel, [2, 3, 8]. In our description it is defined as follows.
We put, for any pair ζ 	= z,

K =
1

|ζ − z|3 γ0(ζ − z) : C∞(C2, S) −→ C∞(C2, S). (2.7)

K decomposes after S+ ⊕ S− as

K =
(

0 K†

K 0

)
, (2.8)

K†(z, ζ) =
1

|ζ − z|3 γ−(ζ − z), K(z, ζ) =
1

|ζ − z|3 γ+(ζ − z). (2.9)

Proposition 2.4.

DzK
†(z, ζ) = 0, D†

zK(z, ζ) = 0, for ζ 	= z. (2.10)



Cohomology Groups of Harmonic Spinors 213

Theorem 2.5 (Cauchy’s integral formula). Let G be a domain in C2 and let ϕ ∈
C∞(G,S+). Then

ϕ(z) = − 1
2π2

∫
G

K†(z, ζ)Dϕ(ζ)dV (ζ) +
1

2π2

∫
∂G

K†(z, ζ)(γϕ)(ζ)dσ(ζ), z ∈ G,
(2.11)

where γ = γ ∂G|S+ and dσ is the surface measure on ∂G.

These are proved, for example, in Proposition 2.1 and Theorem 2.2 of [8].

2.3. Local solutions

Theorem 2.6. Given an odd spinor with compact support ψ ∈ C∞
c (C2, S−), there

is a solution φ ∈ C∞(C2, S+) of the equation

Dφ(z) = ψ(z), z ∈ C2. (2.12)

Proof. It is proved in [8] that

φ(z) =
1

2π2

∫
C2
K†(z, ζ)ψ(ζ)dV (ζ) (2.13)

solves the equation Dφ = ψ. �
2.4. Eigen spinors of the tangential Dirac operator

The Dirac operator D has the polar decomposition

D = γ+

(
∂

∂n
− ∂/

)
. (2.14)

The eigenvalues of the tangential Dirac operator ∂/ on |z| = 1 are
n

2
, −n+ 3

2
; n = 0, 1, . . . ,

and the multiplicity of each eigenvalue is equal to (n+ 1)(n+ 2).
In [9] we gave a complete orthonormal system of eigenspinors {φ±(n,m,l)} of

∂/ in L2({|z| = 1}, S+):

∂/φ(n,m,l) =
n

2
φ(n,m,l)

∂/φ−(n,m,l) = −n+ 3
2

φ−(n,m,l), (2.15)

for l = 0, 1, . . . , n+ 1, m = 0, 1, . . . , n, n = 0, 1, . . ..
{φ±(n,m,l)} are extended to C2 \ {0} by the homogeneity relations

φ(n,m,l)(z) = |z|nφ(n,m,l)(
z

|z| ), (2.16)

φ−(n,m,l)(z) = |z|−(n+3)φ−(n,m,l)(
z

|z| ), (2.17)

for z 	= 0. Then,

Dφ(n,m,l)(z) = 0, on C2.

Dφ−(n,m,l)(z) = 0, on C2 \ {0}. (2.18)
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2.5. Effects of conformal transformations

Here we look at the effect of conformal transformations on the system {φ±(n,m,l)}.
Let f : U −→ R4 be a conformal transformation. f induces a Spin(4)-equivariant
map f� of Spin(4)-principal bundles and it yields a bundle isometry f ′ = ∆(f�) :
S −→ S′ of the associated spinor bundles. The Dirac operator is conformally
covariant, that is, if D′ is the Dirac operator corresponding to the metric g′;
f∗g′ = e2ug, then

D′
f(z) = F ·Dz · F−1, (2.19)

where u is a smooth function on U and F = e−
3
2 uf ′, [6 , 10].

Now let U be a domain containing the disk {|z| ≤ 1}. Then we can verify

∂/ ′
f(z) = ±F ∂/z F

−1 = ±f ′ ∂/z (f ′)−1, on |z| = 1. (2.20)

Hence on the sphere f({|z| = 1}) ⊂ f(U) the eigenvalues of ∂/ are −n+3
2 , n

2 ,
n = 0,±1, . . ., if f is orientation preserving, while they change to n+3

2 , −n
2 ,

n = 0,±1, . . ., if f is orientation reversing. The corresponding eigenspinors be-
come f ′φ±(n,m,l), that were extended to R4 \ f(0) by Fφ±(n,m,l). In particular,
by a coordinate change T ∈ SO(4) we have the same eigenvalues of ∂/ and the
eigenspinors are φ±(n,m,l) ◦ T , and our theory is independent of the choice of the
complex structure C2 � R4. By the transformation f(z) = c + rz, r > 0, we find
that the eigenspinors on |z − c| = r are given by

r∓(n+ 3
2 )φ±(n,m,l)(z − c).

On the other hand by the inversion f(z) = − z
|z| , we have

Fφ±(n,m,l)(z) = |z|3γ(z) · φ±(n,m,l)(z). (2.21)

Note that |z|3γ(z)·φ(n,m,l) belongs to the eigenvalue −n
2 .

Having verified the covariance of our theory on R4 under conformal transfor-
mations we can extend it to a manifold which is locally R4 and patched together
by conformal transformations, that is, to a conformally flat 4-manifold. For ex-
ample, S4 is obtained by patching up two copies of C2 together by the inversion
w = f(z) = z

|z|2 . We shall denote these two local coordinates by C2
z and C2

w.
f has the conformal weight u = − log |z|2; f∗(dwdw) = 1

|z|4 (dzdz). Therefore
an even spinor φ on a subset U of S4 is a pair of φ ∈ C∞(U ∩ C2

z × ∆+) and
φ̂ ∈ C∞(U ∩ C2

w ×∆−) such that

φ̂(w) = (f ′φ)(f(z)) = |z|3(γ+ · φ)(z), (2.22)

for w = f(z).
The Cauchy kernel on C2

w has the form

K̂†(w, η) = −|z|3γ+(z)K†(z, ζ)γ+(ζ), w = f(z), η = f(ζ). (2.23)
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2.6. Expansion of the Cauchy kernel

We proved in [8] that the Cauchy kernel has the following expansion by the spinors
φ±(n,m,l)(z − c).
Theorem 2.7. 1. For |z − c| < |ζ − c|,

K†(z, ζ) · γ+(ζ − c)

=
∑

n

n+1∑
l=0

n∑
m=0

|ζ − c|−(2n+3)φ(n,m,l)(ζ − c)⊗ φ(n,m,l)(z − c).

The convergence is uniform on any compact subset of {|z − c| < |ζ − c|}.
2. For |z − c| > |ζ − c|,

K†(z, ζ) · γ+(ζ − c)

= −
∑

n

n+1∑
l=0

n∑
m=0

|ζ − c|2n+3φ−(n,m,l)(ζ − c)⊗ φ−(n,m,l)(z − c).

The convergence is uniform on any compact subset of {|z − c| > |ζ − c|}.
2.7. Meromorphic spinors

The Cauchy integral formula and the expansion of the Cauchy kernel in 2.2 and
2.6 yield the Laurent expansion of a harmonic spinor [2, 8].

Theorem 2.8. Let ϕ be a smooth even spinor on the annular region 0 ≤ r <
|z − c| < R ≤ ∞ such that Dϕ = 0. Then we have the expansion

ϕ(z) =
∑

(n,m,l)

C(n,m,l) φ
(n,m,l)(z − c) +

∑
(n,m,l)

C−(n,m,l) φ
−(n,m,l)(z − c), (2.24)

for r < |z − c| < R. The coefficients are uniquely determined by (n,m, l) and c
and are given by

C±(n,m,l) =
ρ∓(2n+3)

2π2

∫
|ζ−c|=ρ

< ϕ(ζ) , φ±(n,m,l)(ζ − c) > σ(dζ) (2.25)

for any ρ such that r < ρ < R.

In the expansion of ϕ in (2.26) the second part∑
(n,m,l)

C−(n,m,l) φ
−(n,m,l)(z − c) (2.26)

is called principal part of ϕ at c.

Definition 2.9. Let G be a domain in C2 and let E be a discrete subset of G. A
harmonic spinor ϕ on G \ E is said to be meromorphic on G if its principal part
has only finitely many terms at every point of E. A point of E is called a pole
of ϕ.
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Let ϕ be a meromorphic spinor with a pole at p ∈ G. Let f be a conformal
transformation. f ′ϕ is expanded around f(p) by a series of f ′φ±(n,m,l), and the
coefficients are given by the corresponding coefficients C±(n,m,l) of the expansion
of ϕ around p. Thus the order of a pole of a meromorphic spinor is invariant by
conformal transformations.

S4 is obtained by patching up C2
z and C2

w together by the inversion w =
f(z) = z

|z|2 . On C2
w the basis vectors of the Laurent expansion at infinity 0̂ are

φ̂±(m,l,k) = |z|3(γ+ · φ±(m,l,k))(z),

with φ̂−(m,l,k) ∈ O(|w|m) and φ̂(m,l,k) ∈ O(|w|−(m+3)). So, on a neighborhood U

of 0̂, ϕ ∈ N (U) has the Taylor expansion

ϕ(w) =
∑

C−(m,l,k)φ̂
−(m,l,k)(w). (2.27)

3. Runge’s approximation theorem

3.1. Approximation of harmonic spinors on a compact set

First we note the following;
1. For a S−-valued Radon measure µ on G ⊂ C2, put

K†µ(z) =
∫
K†(z, ζ)µ(dζ). (3.1)

For µ(dζ) = φ(ζ) dV (ζ) with φ ∈ Γ(S−), we shall abbreviate to K†φ(z).
Then

K†µ(z) ∈ C∞(C2 \G,S+), DK†µ(z) = 0.
2. For a tS+-valued Radon measure ν on G ⊂ C2, put

νK†(ζ) =
∫
ν(dz)K†(z, ζ). (3.2)

νK†(ζ) belongs to C∞(C2 \G, tS
−

), and D† t(νK†)(ζ) = 0.
3. ∫

νK†(ζ)µ(dζ) =
∫
ν(dz)K†µ(z) (3.3)

if Supp[µ] ∩ Supp[ν] = φ.

Theorem 3.1. Let G be a domain in C2 and K be a compact subset of G. Then
any harmonic spinor defined in a neighborhood of K is approximated uniformly on
K by harmonic spinors on G if and only if the open set G \K has no component
which is relatively compact in G.

Proof. Sufficiency: We shall show that every tS+-valued Radon measure ν on K
which annihilates the harmonic (even) spinors on G annihilates also the harmonic
(even) spinors in a neighborhood of K, (then use Hahn-Banach).

Let ν be a tS+ valued Radon measure on K that annihilates the harmonic
(even) spinors on G.
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(1) Put

g(ζ) = νK†(ζ) =
∫
ν(dz)K†(z, ζ), (3.4)

and f(ζ) = tg(ζ).
f is well defined and D†f(ζ) = 0 for ζ ∈ C2 \K. Since DzK

†(z, ζ) = 0 for
ζ 	= z, f(ζ) = 0 on C2 \G from the assumption. Hence, by the unique continuation
property of (odd) harmonic spinors, f(ζ) = 0 in every component of C2 \K which
intersects C2 \G.

Next, since φλ(z), λ = (n,m, l), is a harmonic spinor on C2, we have∫
ν(dz)φλ(z) = 0.

So Theorem 2.7 implies that

g(ζ)γ+(ζ) =
∫
ν(dz)K†(z, ζ)γ+(ζ) = 0,

for |ζ| > supz∈K |z|. Hence f(ζ) = 0 in the unbounded component of C2 \K. Since
G \K has no component which is relatively compact in G we conclude that f = 0
and g = 0 on C2 \K.
(2) Let ϕ be a harmonic spinor on a neighborhood ω of K, and choose a smooth
function u with compact support such that u = 1 on K.

Since uϕ has compact support, we have, from integral formula (2.11),

ϕ(z) = u(z)ϕ(z) = − 1
2π2

K†D(uϕ)(z)

= − 1
2π2

K†( du · ϕ)(z), z ∈ ω.
By (3.3), ∫

ν(dz)ϕ(z) = −
∫
ν(dz)

1
2π2

K†( du · ϕ)(z)

= − 1
2π2

∫
νK†(ζ)( du · ϕ)(ζ)dV (ζ).

Since g = νK† = 0 on C2 \K and the support of (du · ϕ)(ζ)dV (ζ) is contained in
C2 \K, the last integral vanishes. Thus ν annihilates the harmonic spinors on K.

Necessity: We assume that G \ K has a component H such that H is compact
in G. Then the boundary of H is a subset of K and the maximum principle for
subharmonic functions yields

sup
H

|φ| ≤ sup
K
|φ|, for every harmonic spinor φ on G, (3.5)

where |φ| = (< φ, φ >)
1
2 . Let ϕ be a harmonic spinor defined in a neighborhood

of K. By the assumption we can choose a sequence of harmonic spinors ϕn on
G so that ϕn −→ ϕ uniformly on K. (3.5) applied to ϕn − ϕm implies that ϕn

converges uniformly on H to a limit Φ. Then Φ = ϕ on the boundary of H, and
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Φ is a harmonic spinor in H and is continuous in H. In particular, we can choose
ϕ(z) = K†(z, ζ) for a ζ ∈ H. Then Φ(z) = K†(z, ζ) on the boundary of H. Hence
K†( , ζ) which is a harmonic spinor in H \ ζ is extended to a harmonic spinor in
H. This is a contradiction. �

3.2. Global solutions of Dφ = ψ

Theorem 3.2. Let G be an open set in C2. Given a ψ ∈ C∞(G,S−), there is a
solution φ ∈ C∞(G,S+) of the equation

Dφ(z) = ψ(z), z ∈ G. (3.6)

Proof. Choose an increasing sequence of compact sets Kj ⊂ G such that every
compact subset of G is contained in some Kj . We may suppose that no component
of G\Kj is relatively compact in G. If not take the union of Kj and all components
of G \ Kj that are relatively compact in G. Let hj be a smooth function with
compact support in G such that hj = 1 in a neighborhood of Kj . Put f1 = h1,
fj = hj−hj−1. Then fj has compact support and fj = 0 in a neighborhood ofKj−1

and
∑
fj = 1. From the local existence theorem there exists a φj ∈ C∞(C2, S+)

such that
Dφj = fjψ.

This means in particular that φj is a harmonic spinor in a neighborhood of Kj−1.
By Theorem 3.1 we can find a harmonic spinor ϕj on G so that supKj−1

|ϕj−φj | <
2−j . Then the sum

φ =
∑

(ϕj − φj)

is uniformly convergent on every compact subset of G. For each k the sum from
k+ 1 to ∞ converges uniformly on Kk to a harmonic spinor in the interior of Kk.
Hence φ ∈ C∞(G,S+) and we have

Dφ =
∑

Dφj =
∑

fjψ = ψ. �

4. Cohomology Groups of Harmonic Spinors

4.1. Cohomology on conformally flat manifolds

Let (M, g) be a riemannian 4-manifold with conformally flat metric. We suppose
that M has a spin structure and we fix it.

There exists a system of coordinate neighborhoods (Uλ, χλ) in M such that
each Gλ = χλ(Uλ) is a domain in C2 with local coordinate {zλ

1 , z
λ
2 } and such that

the transition function fµλ = χµχ
−1
λ is a conformal transformation:

f∗µλ (dzµ
1 dz

µ
1 + dzµ

2 dz
µ
2 ) = e2uµλ

(
dzλ

1 dz
λ
1 + dzλ

2 dz
λ
2

)
, (4.1)

where uµλ is a smooth function on Gµ ∩Gλ. We have also

(χ−1
λ )∗g = e2uλ(dzλ

1 dz
λ
1 + dzλ

2 dz
λ
2 ), (4.2)

with uλ a smooth function on Gλ, and uµλ = uλ − uµ on Gλ ∩Gµ .
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The Dirac operator is conformally covariant. Let D be the Dirac operator
on (M, g) and let Dλ be the Dirac operator on Gλ ⊂ C2 that we have discussed
hitherto, then

D · Fλ = Fλ ·Dλ, (4.3)

where Fλ = e−
3
2 uλ(χλ)′, see 2.5.

On each open set U contained in a coordinate neighborhood the Dirac oper-
ator

D : C∞(U, S+) −→ C∞(U, S−) (4.4)

is surjective from Theorem 3.2. Thus every open covering U by open subsets con-
tained in coordinate neighborhoods is a Leray covering and we have

Hk(M,N ) = Hk(U ,N ) (4.5)

for every k ≥ 0.
The structure of a Fréchet space on C∞(G,S±) is defined by the uniform

convergence of all the derivatives on compact subsets that are contained in coor-
dinate neighborhoods of G. On the vector subspace of harmonic spinors N (G) the
induced topology coincides with the topology of uniform convergence on compact
subsets. We endow H1(M,N ) = H1(U ,N ) with the structure of a Fréchet space
in an obvious way.

From (1.2) we know that Hk(M,N ) = 0 for k ≥ 2.

Theorem 4.1.

H1(G,N ) = 0, (4.6)

for any open subset G in C2.

The assertion folows from Theorem 3.2.

Theorem 4.2.

H1(S4,N ) = 0. (4.7)

Proof. Let U0 = S4 \ ∞ = C2
z and U1 = S4 \ 0. U1 is conformally equivalent to

C2
w by the Kelvin inversion w = z

|z|2 . It follows from Theorem 4.1 that {U0, U1}
is a Leray covering of S4. Let f01 ∈ N (U0 ∩U1). The Laurent expansion of f01 on
U0 ∩ U1 = C2 \ 0 becomes

f01(z) =
∑
m,l,k

C(m,l,k) φ
(m,l,k)(z) +

∑
m,l,k

C−(m,l,k) φ
−(m,l,k)(z), z 	= 0.

Put

f0(z) =
∑
m,l,k

C(m,l,k) φ
(m,l,k)(z), and f1(z) =

∑
m,l,k

C−(m,l,k) φ
−(m,l,k)(z).

Then f0 ∈ N (U0), while f1 viewed on the coordinate neighborhood C2
w, w = z

|z|2 , is
harmonic, see the discussion at the end of 2.7. Hence f1 ∈ N (U1), and f01 = f0−f1.
Therefore H1(S4,N ) = 0. �
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We would like to pose the following conjecture:

H1(M,N ) = 0,

for every non-compact conformally flat spin manifold M .

Theorem 4.3. Let G′ be an open subset of M and G be a relatively compact open
subset of G′. Then the restriction map

r∗ : H1(G′,N ) −→ H1(G,N )

has a finite dimensional image.

Proof. This follows from Theorem 2.3 and the Schwartz lemma. The latter says
that the image of a homomorphism of Fréchet spaces which is the sum of an
epimorphism and a compact morphism has a finite codimension. Let U be an open
covering of G′. Let V be the image of the map

r ⊕ δ : Z1(U ,N )⊕ C0(U ∩G,N ) −→ Z1(U ∩G,N ),

where δ is the coboundary map and r is the restriction map. Then by the Schwartz
lemma,

V

Im(r ⊕ δ − r ⊕ 0)
=

V

δC0(U ∩G,N )
= Im r∗

is finite dimensional. �

In particular if M is compact the theorem yields the finiteness of dimH1(M,N ).
But this is obvious from the finiteness of dim cokerD.

4.2. Existence of a non-trivial meromorphic spinor

Let M be a conformally flat 4-manifold and (Uλ, χλ) be a system of coordinate
neighborhoods such that Gλ = χλ(Uλ) is a domain in C2. A smooth spinor ϕ on
M \E, E being a discrete subset, is called a meromorphic spinor on M with poles
at E if, for each λ, ϕλ = (χλ)′ϕ is a meromorphic spinor on Gλ ⊂ C2 with poles
at Gλ ∩ χλ(E). This is equivalent to saying that a family of meromorphic spinors
ϕλ on Gλ ⊂ C2 such that ϕµ = (χµλ)′ϕλ defines a meromorphic spinor on M .

Theorem 4.4. Let G be a relatively compact open subset of M . For every point
p ∈ G there is a meromorphic spinor on G which has a pole at p and is smooth on
G \ p.
Proof. Let (U1, χ1) be a coordinate neighborhood of p such that χ1(p) = 0 and
U2 = M \ {p}. Let

d = dim Im(H1(M,N ) −→ H1(G,N )).

We take a set Λ constituting d+ 1 indices from the set of indices (m, l, k); m ≥ 1,
0 ≤ l ≤ m, 0 ≤ k ≤ m+ 1, and we consider spinors {φ−(n,m,l); (n,m, l) ∈ Λ}.
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These are meromorphic spinors on U1 and define a cocycle on U1 ∩ U2 = U1 \
{p}. Restricted on G, the cocycles are linearly dependent, hence there is a linear
combination ∑

(n,m,l)∈Λ

A(n,m,l)φ
−(n,m,l)

that belongs to the coboundary, that is, there exist ξi ∈ N (Ui); i = 1.2, such that∑
(n,m,l)∈Λ

A(n,m,l)φ
−(n,m,l) = ξ2 − ξ1.

Therefore a spinor ϕ which coincides on U1∩G with
∑

(n,m,l)∈ΛA(n,m,l)φ
−(n,m,l)+

ξ1, and which is equal to ξ2 on U2 ∩G, gives a meromorphic spinor on G with the
only pole at p. �

Let U = ∪i∈IUi be an open covering of M . A family (ϕi)i∈I of meromorphic
spinors ϕi on Ui is called a Mittag-Leffler distribution on M if the differences
ϕij = ϕi − ϕj are harmonic spinors on Ui ∩ Uj .

The family of differences ϕij defines a cocycle and this cocycle is a coboundary
precisely when there exists a meromorphic spinor ϕ on M such that for each i ∈ I
the difference ϕ− ϕi is harmonic on Ui.

From Theorems 4.1 and 4.2 we have the following Mittag-Leffler type theo-
rems.

Theorem 4.5. Let G be an open subset of C2. Let (ϕi)i∈I be a Mittag-Leffler dis-
tribution on G. Then there exists a meromorphic spinor ϕ on G such that for each
i ∈ I the difference ϕ− ϕi is harmonic on Ui.

Theorem 4.6. Let (ϕi)i∈I be a Mittag-Leffler distribution on S4. Then there exists
a meromorphic spinor ϕ on S4 such that for each i ∈ I the difference ϕ − ϕi is
harmonic on Ui.

4.3. Serre duality

For an open subset U , D′(U, S±) denotes the set of S±-valued distributions on U ,
and D′(S±) denotes the sheaf of S±-valued distributions. For T ∈ D′(U, S±) and
ϕ ∈ C∞

c (U,S∓), respectively, we have, by the definition,

DT [ϕ] = −T [D†ϕ], D†T [ϕ] = −T [Dϕ],

respectively. D′(M,S±) is a Fréchet space which is dual to C∞
c (M,S±), and D†

is the transposition of D.
We have the following exact sequence:

0 −→ N † −→ D′(S−) D†−→ D′(S+) −→ 0. (4.8)

Here we used Weyl’s lemma to have the kernel N †.
Let E ′(M,S±) = Γc(M,D′(S±)) be the space of S±-valued distributions with

compact supports and let Hk
c (M,N †), k = 0, 1, be the cohomology groups with

compact supports. E ′(M,S±) is the dual of the Fréchet space C∞(M,S±). From
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the short exact sequences (1.1) and (4.10) we have the following exact sequences
of cohomology groups:

0 −→ H0(M,N ) −→ C∞(M,S+) D−→ C∞(M,S−) −→ H1(M,N ),

0←− H1
c (M,N †) ←− E ′(M,S+) D†←− E ′(M,S−)←− H0

c (M,N †) = 0.

H0
c (M,N †) = 0 from Theorem 2.2. Suppose that H1(M,N ) = 0. Then

D, being surjective, becomes a homomorphism of Fréchet spaces by the Banach
theorem.

Theorem 4.7. Suppose H1(M,N ) = 0. Then the dual of H0(M,N ) is isomorphic
to H1

c (M,N †).

5. Divisors of Meromorphic Spinors

5.1. Divisors and meromorphic spinors

We shall consider the cohomology groups of meromorphic spinors on a compact
conformally flat spin manifold M , and prove an analogy of the Riemann-Roch the-
orem. First we note that there is a meromorphic spinor with a pole at a prescribed
point on M , this was proved in Theorem 4.4.

A divisor on a space X is a mapping E : X −→ Z such that for any compact
subset K there are finitely many points c ∈ K with E(c) 	= 0. With respect to
addition the set of all divisors forms an abelian group Div(X). There is a partial
ordering on Div(X); for E,E′ ∈ Div(X), set E ≤ E′ if E(c) ≤ E′(c) for every
c ∈ X.

Since M is compact, for any E ∈ Div(M), there are only finitely many x ∈M
such that E(x) 	= 0. Then we define the degree

deg : Div(M) −→ Z,

by degE =
∑

x∈M E(x).
We shall now define an ordered set of indices to enumerate the basis of spinors

of the Laurent expansion: φ±(n,m,l). We introduce a triplet λ = (n,m, l), 0 ≤ m ≤
n, 0 ≤ l ≤ n + 1. The lexicographic order for two triplets λ is defined by λ ≥ λ′

if either (i)n > n′, or (ii)n = n′, m > m′, or (iii) n = n′, m = m′ and l ≥ l′. We
introduce also the notation −λ = −(n,m, l), and define −λ ≥ −λ′ if λ ≤ λ′. The
smallest positive is o+ = (0, 0, 0) and the largest negative is o− = −(0, 0, 0).

We denote by Z the set of all triplets λ and Z≥0+ (resp. Z≤0−) the set of
all λ ≥ o+ (resp. −λ ≤ o−). We denote | ± λ| = ±n for ±λ = ±(n,m, l), and put
Z±n = {±λ = ±(n,m, l); 0 ≤ m ≤ n, 0 ≤ l ≤ n + 1} . Note that, by convention,
+0 	= −0.
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For a meromorphic spinor ϕ on an open set G ⊂ M and c ∈ G, the Laurent
expansion at c becomes

ϕ(z) =
∑

λ∈Z≥0

Cλ φ
λ(z − c) +

∑
−λ∈Z≤0

C−λ φ
−λ(z − c), r < |z − c| < R. (5.1)

We define

ordc(ϕ) :=




0, if C−λ = 0 for all −λ ≤ 0− and Cλ 	= 0 for some λ∈Z0

k, if C−λ = 0 for all −λ ≤ 0− , Cλ = 0 for all |λ| ≤ k − 1,
and Cλ 	= 0 for some λ ∈ Zk

−(k + 1), if C−λ = 0 for | − λ| ≤ −(k + 1),
and C−λ 	= 0 for some −λ ∈ Z−k

∞, if ϕ ≡ 0 in a neighborhod of c

The divisor of a meromorphic spinor ϕ not identically 0 is defined by

(ϕ) =
∑
c∈G

ordc(ϕ) · c. (5.2)

For example, from (2.22) we know that each φ±(n,m,l) gives a meromorphic spinor
on S4. Let 0̂ denote the point at infinity: C2

z ∪ 0̂ = S4. We have

(φ(n,m,l) ) = n · 0− (n+ 1) · 0̂
(φ−(n,m,l) ) = −(n+ 1) · 0 + n · 0̂.

Let E be a Divisor. For an open set U ⊂M we define

LE(U) = {ϕ ∈M(U); ordx(ϕ) ≥ −E(x) for ∀x ∈ U .}
Example. We have for E = np, p ∈M ,

LE(U) = {ϕ =
∑

|−λ|≥−(n−1)

C−λφ
−λ(z) +

∑
λ≥0+

Cλφ
λ(z) }

L−E(U) = {ϕ =
∑
|λ|≥n

Cλφ
λ(z) }

in a local coordinate around p.

Let p ∈M . The skyscraper sheaf Cp is defined by

Cp(U) =
{

C, if p ∈ U ,
0, if p /∈ U ,

Let E ∈ Div(M) and p ∈ M . We look at p also as a divisor, p ∈ Div(M).
Then E′ = E + p ∈ Div(M). We define a sheaf homomorphism

ρ : LE′ −→ Cp

as follows. For an open set U , if p 	= U then ρU is the zero homomorphism. If
p ∈ U and ϕ ∈ LE′(U), then ϕ admits a Laurent expansion around p,

ϕ(z) =
∑

|−λ|≥−k

C−λφ
−λ +

∑
λ≥0+

Cλφ
λ,
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where E(p) = k, hence E′(p) = k+1. Set ρU (ϕ) = C−λ0 for the smallest −λ0 such
that C−λ0 	= 0 and | − λ0| = −k. Then ρ is a sheaf homomorphism and we have
the short exact sequence

0 −→ LE −→ LE+p −→ Cp −→ 0. (5.3)

Therefore we have the following exact sequence of cohomologies:

0 −→ H0(M,LE) −→ H0(M,LE+p) −→ C

−→ H1(M,LE) −→ H1(M,LE+p) −→ 0.

(5.4)

Lemma 5.1. Suppose M is compact and let E ≤ E′ be divisors. Then we have an
epimorphism

H1(M,LE) −→ H1(M,LE′) −→ 0.

Theorem 5.2. Suppose E is a divisor on a compact conformally flat four dimen-
sional spin manifold M . Then

dimH0(M,LE)− dimH1(M,LE) = degE, (5.5)
Hp(M,LE) = 0 for p ≥ 2. (5.6)

Proof. For a divisor E = 0, the assertion follows from the Atiyah-Singer index
theorem (1.3). In fact, for a conformally flat manifold M , the Weyl tensor vanishes
from the definition, and the first Pontryagin number p1(M) is zero.

Let E ∈ Div(M) and E′ = E + p. Let V = Im(H0(M,LE′) −→ C ) and
W = C/V . Then dimV + dimW = 1 = degE′ − degE. From the exact sequence
(5.4) we have,

dimH0(M,LE′) = dimH0(M,LE) + dimV,

dimH1(M,LE′) = dimH1(M,LE)− dimW.

Hence

dimH0(M,LE′)− dimH1(M,LE′)− degE′

= dimH0(M,LE)− dimH1(M,LE)− degE.

Thus (5.5) holds for E (resp. E′) if it holds for E′ (resp. E). In particular (5.5) is
true for every divisor E′ ≥ 0. Any divisor may be written as

E = p1 + . . .+ pm − pm+1 − . . .− pn.

Hence the first assertion is proved by induction. As for the second part, we know
Hp(M,N ) = 0 for p ≥ 2, that is, Hp(M,L0) = 0 for p ≥ 2. Then, by the same
argument using the exact sequence (5.4) as in the first part, we can prove

Hp(M,LE) = 0 for p ≥ 2,

for every divisor E. �
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