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Cohomology Groups of Harmonic Spinors on
Conformally Flat Manifolds

Tosiaki Kori

Abstract. We shall investigate various properties of the sheaf of harmonic
spinors A/ on C? and, more generally, on conformally flat spin 4-manifolds.
We prove the Runge approximation theorem on C2, and the vanishing of
cohomologies; H'(C*,N) = 0 and H'(S*,N) = 0. We shall introduce a
concept of divisors of meromorphic spinors on a compact conformally flat
spin 4-manifold , and give an analogy of Riemann-Roch theorem.
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1. Introduction

This is a continuation of our previous research on harmonic spinors on conformally
flat spin 4-manifolds, [8], [9]. Let (M, S) be a 4-dimensional Riemannian manifold
with a compatible spin structure, S = ST @ S~, ST being the two spin bundles
associated to two half-spin representations of Spin(4). Let D : ST — S~ be
the (half) Dirac operator. A spinor ¢ € C°°(S™) is called a harmonic spinor if
Dy = 0. Let NV be the sheaf of harmonic spinors. Since D is an elliptic operator,
we have the exact sequence

0—N-—8t 285 —0, (1.1)
where ST is the sheaf of even (resp. odd) spinors. Therefore
HP(M,N) = 0 forp>2,
HY(M,N) = coker{D;C>®(M,S") — C>(M,S7)}, (1.2)
HY(M,N) = ker{D;C>®(M,S%) — C>(M,S™)}.
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HY(M,N) and H°(M, N) are endowed with the structure of Frechet spaces. When
M is compact these are finite dimensional, and we have

dim HO(M, N) — dim H (M, \') = index(D) = —%pl(M), (1.3)

from the Atiyah-Singer index theorem, where p; (M) is the first Pontryagin number
of the 4-manifold M.

We are interested in the vanishing of H* (M, N'). We shall prove it if M is an
open subset of C? and for M = S*. We conjecture the vanishing of H*(M, ) for
any non-compact conformally flat spin 4-manifold.

Now we shall explain the contents of each sections After the introduction of
ingredients on spinor analysis that are studied in [8], we shall prove in Section
3 the Runge approximation theorem, that is, any harmonic spinor on a compact
subset K of a domain G C C? such that G\ K has no relatively compact con-
nected component can be approximated uniformly on K by harmonic spinors on
G. Several Runge type theorems for Clifford algebra valued functions on a domain
in R™, as well as for Clifford modules, were proved earlier in [2, 3, 11]. We think
our argument, which is close to that by Hérmander [7], is worth to be presented.
In 3.2 we prove that the Dirac equation Dy = 1 has a solution on any open subset
G of C2. Hence we have

HY(G,N) =0. (1.4)

We can verify the covariance of our theory under conformal transformations
on R*, thus we can extend it to a conformally flat 4-manifold. In particular the
above stated properties are independent of the complex structure on R*. In Sec-
tion 4 we shall deal with the cohomology of N on a conformally flat 4-manifold
M. We shall see that the cohomology group H'(M,N) is calculated by a Leray
covering. Thus we see that the well known argument to have the classical result
H'(P'(C),0) =0 is valid to prove

HY(S*,N) =0. (1.5)
We shall prove that the restriction map
HY(G',\N) — HY(G,N)

has a finite dimensional image for a relatively compact open subset G of an open
subset G’ € M. This implies the existence of a non-trivial meromorphic spinor on
a relatively compact open subset of M.

Our results should extend to even dimensional conformally flat manifolds. In
fact we have already the Runge approximation theorem on a domain in R™ as was
proved earlier in [3], so if we adopted it we could in principle obtain the results in
Section 4 also on a domain in R??, but it would be very complicated to write it
down because of the 2" components of spinors.

In Section 5 we shall study the cohomology groups of meromorphic spinors,
that is, harmonic spinors with singularity, on compact conformally flat 4-manifolds.
We develop a divisor theory for meromorphic spinors. But, because we have no
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product operation on spinors, this is a linear analogy of classical divisors of mero-
morphic functions. We shall show a Riemann-Roch type theorem for the cohomo-
logical dimensions of meromorphic spinors with prescribed divisor. More precisely,
let E be a divisor on a compact conformally flat manifold M and let Lg be the
sheaf of meromorphic spinors having the poles at E of order less than deg . Then
we have

dim H°(M, Lg) — dim H' (M, L) = deg E, (1.6)
HP(M,Lg) =0 for p>2. (1.7)

2. Preliminaries on the Dirac operator and the Cauchy kernel

Here we shall summarize some ingredients of spinor analysis that are now well
known, [1, 2, 10].

2.1. Dirac operator and harmonic spinors

Let A = AT ® A~ be an irreducible complex representation of the Clifford algebra
Clif(R*); Clif(R*) ® C = End(A). A decomposes to irreducible representations
A* of Spin(4), each of which has dim AT = 2. Let S = R* x A be the spinor
bundle on R*. The corresponding bundle S* ( resp. S~ ) is called even (resp. odd)
spinor bundle.

We shall choose complex coordinates and look at R* ~ C2. Our theory does
not depend on the complex structure but on the conformal structure on the man-
ifold. The complex coordinates description is adopted for convenience of notation,
though this notation allows us to see things in perspective, for example, our formu-
las for eigenspinors of the Dirac operator fit for the SU(2) representation theory.

Given a smooth boundary 0G of a region G we shall denote by vgc the
Clifford multiplication of the outer unit normal on 0G. We shall abbreviate it as
~ if it is obvious which boundary we are considering. v changes the chirality:

Yog: ST® ST — ST @St Yo = 1. (2.1)

Let 7 denote the Clifford multiplication of the radial vector %, the unit
normal to the unit sphere. The chiral decomposition of v9 becomes

ST S+
70—(7(1 70): ea_ — es_. (2.2)
S S
The Dirac operator is defined by
D =cod, (2.3)

where d : § — S @ T*C? ~ § ® TC? is the exterior differentiation and ¢ : S ®
TC? — S is the bundle homomorphism coming from the Clifford multiplication.
D is an elliptic operator.
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By means of the decomposition S = ST @ S~ the Dirac operator is decom-
posed into chiral components:

0 Df o - o0 -
D:(D 0 >:C (C’,5T®S™) —C>(C*,8Tas). (2.4)

An even (resp. odd) spinor ¢ is called harmonic spinor if Dy = 0 (resp.
DTp = 0). We denote by N'(U) (resp. N'T(U)) the set of even (resp. odd) harmonic
spinors on an open set U.

Remark 2.1. In [9] we called ¢ € N(M) a zero mode spinor on M. The reason
why we preferred it was that, on a noncompact manifold M, the condition of
harmonicity, DT Dy = 0, is not equivalent to Dy = 0.

The following fundamental properties of harmonic spinors are well known [1].

Theorem 2.2. A harmonic spinor on a connected open set vanishes identically if
it vanishes on an open subset.

Theorem 2.3. If U and V are domains in C? such that V is compact in U, then
the restriction map r¥ : N(U) — N(V) is compact.

The following Stokes’ formula holds for ¢ € C*°(G, ST) and ¢ € C*®(G, S7):

/<D¢,1/J>dV+/ <¢,DT1/J>dV:/ <y ¢, > do. (2.5)
G G oG

We shall denote in the sequel
(¢1,02) = /2 < 1,02 >dV, for @1, ps € C®(C29). (2.6)
C

2.2. Cauchy integral formula

The Cauchy kernel is the Clifford multiplication of the radial component of the

gradient of the Newton kernel, [2, 3, 8]. In our description it is defined as follows.

We put, for any pair ¢ # z,
1

K= Wyo(g —2) : C®(C%8) — C™(C?%,S). (2.7)
K decomposes after ST @ S~ as
K= ( e Ig ) (2.8)
1

KT(Z‘?C) = m%(( —2), K(z,¢) = W%r@ —z). (2.9)

Proposition 2.4.

D.K'(z,¢) =0, DIK(2,¢) =0,  for (#z (2.10)
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Theorem 2.5 (Cauchy’s integral formula). Let G be a domain in C? and let ¢ €
C>=(G, S"') Then

o) = —33 | K1 0DROV Q) + 57 [ KI000)Qde(0). 2.
(2.11)
where v = v5¢|ST and do is the surface measure on OG.

These are proved, for example, in Proposition 2.1 and Theorem 2.2 of [8].

2.3. Local solutions
Theorem 2.6. Given an odd spinor with compact support 1 € C>(C? S7), there
is a solution ¢ € C*°(C2,SY) of the equation
D¢(z) = (=), z € C% (2.12)
Proof. Tt is proved in [8] that
1
¢(2) =55 K'(2,Q)9(¢)av (<) (2.13)
v Q2
solves the equation D¢ = ). O
2.4. Eigen spinors of the tangential Dirac operator
The Dirac operator D has the polar decomposition

0
D = — - . 2.14
(55 -9) (2.14)
The eigenvalues of the tangential Dirac operator J on |z| = 1 are
ﬁ, _n+3; n=20,1,...,
2 2

and the multiplicity of each eigenvalue is equal to (n + 1)(n + 2).
In [9] we gave a complete orthonormal system of eigenspinors {=(™7D} of

@ in L2({|z] = 1},87):

(n,m,l) ﬁ (n,m,l)
99 2o
gy = A, (215)

forl=0,1,...,.n+1,m=0,1,...,n, n=0,1,....
{pT(mDY are extended to C2 '\ {0} by the homogeneity relations

¢—(n,m,l)<z) _ |Z‘ (n+3) ¢ (nml)(|z\) (2.17)
for z # 0. Then,
D¢(”*m’l)(z) = 0, on CZ2.

Dy=(mml(z) = 0, on C?\ {0}. (2.18)
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2.5. Effects of conformal transformations

Here we look at the effect of conformal transformations on the system {¢*(m:0},
Let f : U — R* be a conformal transformation. f induces a Spin(4)-equivariant
map f, of Spin(4)-principal bundles and it yields a bundle isometry f' = A(f,) :
S — S5’ of the associated spinor bundles. The Dirac operator is conformally
covariant, that is, if D’ is the Dirac operator corresponding to the metric ¢’;
f*g' = e*g, then

Dy =F-D.-F, (2.19)

where  is a smooth function on U and F = e~ 2%/, [6 , 10].
Now let U be a domain containing the disk {|z| < 1}. Then we can verify

@}(z) =+F{, F~1_— +f . (f/)_l, on |z| = 1. (2.20)

= 1 +3
Hence on the sphere f({|z] = 1}) C f(U) the eigenvalues of @ are —%, 2,
n = 0,41,..., if f is orientation preserving, while they change to 22, —2,
n = 0,%£1,..., if f is orientation reversing. The corresponding eigenspinors be-

come f'¢Fm™D  that were extended to R*\ f(0) by F¢=(™ In particular,
by a coordinate change T' € SO(4) we have the same eigenvalues of @ and the
eigenspinors are ¢=("™1 o T and our theory is independent of the choice of the
complex structure C? ~ R*. By the transformation f(z) = ¢+ rz, r > 0, we find
that the eigenspinors on |z — ¢| = r are given by

p ¥R gEml) ;o).

On the other hand by the inversion f(z) = —%, we have

Fo=m)(2) = [2P(2) - g£md(2). (2.21)

n
5
Having verified the covariance of our theory on R* under conformal transfor-

mations we can extend it to a manifold which is locally R* and patched together
by conformal transformations, that is, to a conformally flat 4-manifold. For ex-
ample, S* is obtained by patching up two copies of C2? together by the inversion
w = f(z) = % We shall denote these two local coordinates by C? and C2.

f has the conformal weight u = —log|z|?; f*(dwdw) = #(dzd%). Therefore
an even spinor ¢ on a subset U of S* is a pair of ¢ € C°(U N C? x AT) and
¢ € C=(UNC2 x A7) such that

~

o(w) = (f'9)(f(2)) = 21> (74 - ) (2), (2.22)

Note that |z[37(2)-¢(™™! belongs to the eigenvalue —

for w = f(z).
The Cauchy kernel on C2, has the form

Ki(w,n) = =24 (KT (2, O Q). w=f(2), n = f(O). (2.23)
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2.6. Expansion of the Cauchy kernel

We proved in [8] that the Cauchy kernel has the following expansion by the spinors
(bzl:(n,m,l) (Z _ C).

Theorem 2.7. 1. For |z —c| < |{ —¢],

K'(2,0) - v+(C—¢)

n+l n

= 3N e eI = ¢ @ oz o),

n 1=0 m=0
The convergence is uniform on any compact subset of {|z —c| < |¢ — ¢|}.
2. Forlz—c|>|¢C—¢,

E'z,0) - 74(C o)

n+l n

= — S =P — ) @ gD (2 — o).

n =0 m=0

The convergence is uniform on any compact subset of {|z —c| > |( — c|}.

2.7. Meromorphic spinors
The Cauchy integral formula and the expansion of the Cauchy kernel in 2.2 and
2.6 yield the Laurent expansion of a harmonic spinor [2, §].

Theorem 2.8. Let ¢ be a smooth even spinor on the annular region 0 < 1 <
|z — ¢| < R < o0 such that Do = 0. Then we have the expansion

Lp(z) = Z C(n,m,l) ¢(n’m’l)(2 — C) + Z C,(n’m’l) ¢_(n’m’l)(z — C), (2.24)
(n,m,l) (n,m,l)

forr < |z —¢c| < R. The coefficients are uniquely determined by (n,m,l) and c
and are given by
pﬂF(2n+3)

CV:I:(n.,m,l) = o2

~/|(— _ < @(C)’ ¢i(n,m,l)(g —C) > J(dC) (2.25)

for any p such that r < p < R.

In the expansion of ¢ in (2.26) the second part
> Cpmpy o™ (z = c) (2.26)
(n,m,l)
is called principal part of ¢ at c.
Definition 2.9. Let G be a domain in C? and let E be a discrete subset of G. A
harmonic spinor ¢ on G \ F is said to be meromorphic on G if its principal part

has only finitely many terms at every point of E. A point of E is called a pole
of .



216 Tosiaki Kori

Let ¢ be a meromorphic spinor with a pole at p € G. Let f be a conformal
transformation. f’¢ is expanded around f(p) by a series of f'¢*(™™! and the
coefficients are given by the corresponding coefficients C(,, , 1y of the expansion
of ¢ around p. Thus the order of a pole of a meromorphic spinor is invariant by
conformal transformations.

S* is obtained by patching up C2 and C? together by the inversion w =
fz)= % On C2, the basis vectors of the Laurent expansion at infinity 0 are

(gi(m,hk) _ |Z\3(’Y+ .¢:|:(m,l,k))(z)’

with ¢~ (M8 € O(lw|™) and ™% € O(jw|~(m+3)). So, on a neighborhood U
of 0, p € N(U) has the Taylor expansion

po(w) = Z Cf(m,l,k)(g_(m’l’k)(w)- (2.27)

3. Runge’s approximation theorem

3.1. Approximation of harmonic spinors on a compact set
First we note the following;
1. For a S™-valued Radon measure p on G C C?, put

Klu(z) = [ K1z 0)n(dc). (3.1)

For u(d¢) = ¢(¢)dV(¢) with ¢ € I'(S™), we shall abbreviate to KT¢(2).
Then
K'u(z) e C(C*\ G, SH), DK u(z) = 0.
2. For a tS+-valued Radon measure v on G C C2, put

vKT(¢) :/V(dz)KT(z,C). (3.2)
vKT(¢) belongs to C*(C2\ G, S ), and DT {(vKT)(¢) = 0.
3.

[rit@utdc) = [ vias) Kt ue) (3.3)
if Supp(p] N Supp[v] = ¢.

Theorem 3.1. Let G be a domain in C? and K be a compact subset of G. Then
any harmonic spinor defined in a neighborhood of K is approximated uniformly on
K by harmonic spinors on G if and only if the open set G\ K has no component
which is relatively compact in G.

Proof. Sufficiency: We shall show that every *S+-valued Radon measure v on K
which annihilates the harmonic (even) spinors on G annihilates also the harmonic
(even) spinors in a neighborhood of K, (then use Hahn-Banach).

Let v be a S+ valued Radon measure on K that annihilates the harmonic
(even) spinors on G.
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(1) Put
9(Q) = vKT(¢) = / V(d2) K (2,0), (3.4)

and f(¢) = "g(¢).
f is well defined and DTf(¢) = 0 for ¢ € C?\ K. Since D,K(z,¢) = 0 for

¢ # 2, f(¢) =0o0n C?\G from the assumption. Hence, by the unique continuation
property of (odd) harmonic spinors, f(¢) = 0 in every component of C?\ K which
intersects C2 \ G.

Next, since ¢*(z), A = (n,m, 1), is a harmonic spinor on C2, we have

/zx(dz)gzb/\(z) = 0.

So Theorem 2.7 implies that
9010 = [ a2 00 =0

for |¢] > sup,cx |2|- Hence f(¢) = 0 in the unbounded component of C?\ K. Since
G\ K has no component which is relatively compact in G we conclude that f =0
and g =0 on C?\ K.
(2) Let ¢ be a harmonic spinor on a neighborhood w of K, and choose a smooth
function v with compact support such that u =1 on K.

Since up has compact support, we have, from integral formula (2.11),

p(z) = u(2)p(2) = 5 5 K" D{ug) (2)

1
;
_WK (du-¢)(z), z€w.

By (3.3),

[rtdaete) = - [vdagsrt(du )z

=L [ UET(O)(du- 9)(Qav ().

272

Since g = vKT = 0 on C?\ K and the support of (du - ¢)(¢)dV (¢) is contained in
C?\ K, the last integral vanishes. Thus v annihilates the harmonic spinors on K.

Necessity: We assume that G\ K has a component H such that H is compact
in G. Then the boundary of H is a subset of K and the maximum principle for
subharmonic functions yields

sup |¢| < sup ||, for every harmonic spinor ¢ on G, (3.5)
" K

where |¢| = (< ¢, >)%. Let ¢ be a harmonic spinor defined in a neighborhood
of K. By the assumption we can choose a sequence of harmonic spinors ¢,, on
G so that ¢, — ¢ uniformly on K. (3.5) applied to ¢, — ¢, implies that ¢,
converges uniformly on H to a limit ®. Then ® = ¢ on the boundary of H, and
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& is a harmonic spinor in H and is continuous in H. In particular, we can choose
¢(2) = KT(2,¢) for a ¢ € H. Then ®(z) = K(z,¢) on the boundary of H. Hence
KT( ,¢) which is a harmonic spinor in H \ ¢ is extended to a harmonic spinor in
H. This is a contradiction. U

3.2. Global solutions of D¢ = v

Theorem 3.2. Let G be an open set in C2. Given a ¢ € C>®(G,S™), there is a
solution ¢ € C(G, ST) of the equation

D¢(z) = ¥(2), z €. (3.6)

Proof. Choose an increasing sequence of compact sets K; C G such that every
compact subset of G is contained in some K;. We may suppose that no component
of G\ K is relatively compact in G. If not take the union of K; and all components
of G\ K; that are relatively compact in G. Let h; be a smooth function with
compact support in G such that h; = 1 in a neighborhood of K;. Put fi = hy,
fj = hj—h;_1. Then f; has compact support and f; = 0 in a neighborhood of K;_;
and Y f; = 1. From the local existence theorem there exists a ¢; € C*°(C?, ST)
such that

Doj = fiy.
This means in particular that ¢; is a harmonic spinor in a neighborhood of K;_.
By Theorem 3.1 we can find a harmonic spinor ¢; on G so that Supg, lo;— ;| <
277, Then the sum
b= (p;— ;)
is uniformly convergent on every compact subset of G. For each k the sum from

k41 to oo converges uniformly on K} to a harmonic spinor in the interior of K.
Hence ¢ € C*°(G, ST) and we have

D¢=> D¢; = fio=1. O

4. Cohomology Groups of Harmonic Spinors

4.1. Cohomology on conformally flat manifolds

Let (M, g) be a riemannian 4-manifold with conformally flat metric. We suppose
that M has a spin structure and we fix it.

There exists a system of coordinate neighborhoods (Uy, x») in M such that
each G = x(U) is a domain in C? with local coordinate {27, 23} and such that
the transition function f, = Xqul is a conformal transformation:

Fix (dz} dZ) + d2b dzh) = e (dz dzy + dzydzy) (4.1)
where u, is a smooth function on G, N G5. We have also
(X179 = ¥ (dzydzy + dzpdzy), (4.2)

with u) a smooth function on G, and u,y = uy —u, on Gy NG, .
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The Dirac operator is conformally covariant. Let D be the Dirac operator
on (M, g) and let Dy be the Dirac operator on G C C? that we have discussed
hitherto, then

D-F\=F)\-Dy, (4.3)
where Fy = e~ 3% (y,)/, see 2.5.

On each open set U contained in a coordinate neighborhood the Dirac oper-

ator

D: C®(U,S") — C=(U,S™) (4.4)
is surjective from Theorem 3.2. Thus every open covering U by open subsets con-
tained in coordinate neighborhoods is a Leray covering and we have

H*(M,N) = H*(U,N) (4.5)

for every k > 0.

The structure of a Fréchet space on C>(G, S*) is defined by the uniform
convergence of all the derivatives on compact subsets that are contained in coor-
dinate neighborhoods of G. On the vector subspace of harmonic spinors AV'(G) the
induced topology coincides with the topology of uniform convergence on compact
subsets. We endow H'(M,N) = H'(U,N') with the structure of a Fréchet space
in an obvious way.

From (1.2) we know that H¥(M,N) =0 for k > 2.

Theorem 4.1.
HY(G,N) =0, (4.6)

for any open subset G in C2.
The assertion folows from Theorem 3.2.

Theorem 4.2.
HY(S*,N) =0. (4.7)

Proof. Let Uy = S*\ co = C2 and U; = §*\ 0. U; is conformally equivalent to
C2 by the Kelvin inversion w = % It follows from Theorem 4.1 that {Uy, U}

is a Leray covering of S*. Let fo; € N(Up N Uy). The Laurent expansion of fp; on
Up N Uy = C?\ 0 becomes

fo1(2) = Y Clomy @™ P ) + Y Copmuny ™™ (), 2 #£0.

m,l,k m,l,k
Put
fo(z) = Z Cim,i k) ¢(m’l’k)(z), and f1(z) = Z C_(m,1k) ¢_(m’l’k)(z).
m,l,k m,l,k

Then fo € N'(Up), while f; viewed on the coordinate neighborhood C2,, w = @, is

harmonic, see the discussion at the end of 2.7. Hence f; € N (Uy), and fo1 = fo—f1-
Therefore H'(S*, N) = 0. O
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We would like to pose the following conjecture:
HY(M,N) =0,
for every non-compact conformally flat spin manifold M.

Theorem 4.3. Let G’ be an open subset of M and G be a relatively compact open
subset of G'. Then the restriction map

r*: HY(G',N) — H*(G,N)
has a finite dimensional image.
Proof. This follows from Theorem 2.3 and the Schwartz lemma. The latter says
that the image of a homomorphism of Fréchet spaces which is the sum of an

epimorphism and a compact morphism has a finite codimension. Let i be an open
covering of G'. Let V be the image of the map

r®d: ZYUN)e C'UNG,N) — Z'UNG,N),

where 0§ is the coboundary map and r is the restriction map. Then by the Schwartz
lemma,
\%4 B \%
Im(r@d—r®0) SCOUNG,N)

is finite dimensional. O

=Im7r*

In particular if M is compact the theorem yields the finiteness of dim H' (M, N).
But this is obvious from the finiteness of dim cokerD.

4.2. Existence of a non-trivial meromorphic spinor

Let M be a conformally flat 4-manifold and (Uy, x») be a system of coordinate
neighborhoods such that G\ = x(U,) is a domain in C2. A smooth spinor ¢ on
M\ E, E being a discrete subset, is called a meromorphic spinor on M with poles
at E if, for each A\, o5 = ()’ is a meromorphic spinor on Gy C C? with poles
at Gy N xa(F). This is equivalent to saying that a family of meromorphic spinors
@ on G\ C C? such that ©u = (xur)' @ defines a meromorphic spinor on M.

Theorem 4.4. Let G be a relatively compact open subset of M. For every point
p € G there is a meromorphic spinor on G which has a pole at p and is smooth on

G\ p.

Proof. Let (U1, x1) be a coordinate neighborhood of p such that x1(p) = 0 and
Us = M\ {p}. Let

d = dim Im(H'(M,N) — H'(G,N)).

We take a set A constituting d + 1 indices from the set of indices (m,l, k); m > 1,
0<1<m,0<k<m+1,and we consider spinors {¢~ (™D (n,m,1) € A}.
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These are meromorphic spinors on U; and define a cocycle on Uy NU; = Uy \
{p}. Restricted on G, the cocycles are linearly dependent, hence there is a linear

combination
Z A(n,m,l)¢_("7m’l)
(n,m,l)EA

that belongs to the coboundary, that is, there exist & € N (U;); i = 1.2, such that
Z A(n,m,l)qs_(n)m)l) = 52 - £1~

(n,m,l)eA

Therefore a spinor ¢ which coincides on Uy NG with Z(n)m Den A(nymyl)¢_("’m’l) +
&1, and which is equal to & on Us; NG, gives a meromorphic spinor on G with the
only pole at p. O

Let U = U;c1U; be an open covering of M. A family (¢;);er of meromorphic
spinors ¢; on U; is called a Mittag-Leffler distribution on M if the differences
©ij = @i — @; are harmonic spinors on U; N Uj.

The family of differences ¢;; defines a cocycle and this cocycle is a coboundary
precisely when there exists a meromorphic spinor ¢ on M such that for each i € I
the difference ¢ — ¢; is harmonic on Us;.

From Theorems 4.1 and 4.2 we have the following Mittag-Leffler type theo-
rems.

Theorem 4.5. Let G be an open subset of C2. Let (;)icr be a Mittag-Leffler dis-
tribution on G. Then there exists a meromorphic spinor ¢ on G such that for each
i € I the difference ¢ — @; is harmonic on U;.

Theorem 4.6. Let (p;);cr be a Mittag-Leffler distribution on S*. Then there evists
a meromorphic spinor ¢ on S* such that for each i € I the difference o — @; is
harmonic on U;.

4.3. Serre duality
For an open subset U, D'(U, ST) denotes the set of ST-valued distributions on U,
and D’(S¥*) denotes the sheaf of S*-valued distributions. For T € D'(U, S*) and
p € C*(U,S8T), respectively, we have, by the definition,
DT[¢] = =T[D'¢], D'Tlp] = -T[Dy],

respectively. D'(M, S*) is a Fréchet space which is dual to C°(M,ST), and DT
is the transposition of D.

We have the following exact sequence:

:
0— NT—DI(s7) 2 D(st) — 0. (4.8)

Here we used Weyl’s lemma to have the kernel A/T.
Let &'(M, S*) = I'.(M, D'(S%)) be the space of S*-valued distributions with
compact supports and let H*(M,NT), k = 0,1, be the cohomology groups with
compact supports. (M, ST) is the dual of the Fréchet space C*(M, S*). From
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the short exact sequences (1.1) and (4.10) we have the following exact sequences
of cohomology groups:

0— HY(M,N) — C®(M,8T) 2 C®(M,87) — H'(M,N),

0— H(MN) &5t 2 &(,57) — H(M,NT) = 0.

HY(M,N*t) = 0 from Theorem 2.2. Suppose that H'(M,N) = 0. Then
D, being surjective, becomes a homomorphism of Fréchet spaces by the Banach
theorem.

Theorem 4.7. Suppose H'(M,N) = 0. Then the dual of H°(M,N') is isomorphic
to HX(M,NT).

5. Divisors of Meromorphic Spinors

5.1. Divisors and meromorphic spinors

We shall consider the cohomology groups of meromorphic spinors on a compact
conformally flat spin manifold M, and prove an analogy of the Riemann-Roch the-
orem. First we note that there is a meromorphic spinor with a pole at a prescribed
point on M, this was proved in Theorem 4.4.

A divisor on a space X is a mapping F : X — Z such that for any compact
subset K there are finitely many points ¢ € K with E(c) # 0. With respect to
addition the set of all divisors forms an abelian group Div(X). There is a partial
ordering on Div(X); for E,E’ € Div(X), set E < E' if E(c) < E’(c) for every
ce X.

Since M is compact, for any E € Div(M), there are only finitely many x € M
such that E(x) # 0. Then we define the degree

deg : Div(M) — Z,

by deg =3 . E(x).

We shall now define an ordered set of indices to enumerate the basis of spinors
of the Laurent expansion: ¢~ We introduce a triplet A = (n,m,1), 0 < m <
n, 0 <1 < n+ 1. The lexicographic order for two triplets A is defined by A > X
if either (i)n > n/, or (ii)n =n', m > m/, or (lii) n =n', m=m' and [ > I'. We
introduce also the notation —\ = —(n,m, 1), and define —\ > —\" if A < \. The
smallest positive is o4 = (0,0,0) and the largest negative is o = —(0,0,0).

We denote by Z the set of all triplets A and Z>¢, (resp. Z<¢_) the set of
all A > o4 (resp. —A < o_). We denote | + A\| = £n for £A = +(n,m,l), and put
Zip ={E£X=£(n,m,1); 0 <m < n,0 <1< n+1}. Note that, by convention,
10 # —0.
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For a meromorphic spinor ¢ on an open set G C M and ¢ € G, the Laurent
expansion at ¢ becomes

o(z) = Z C\ ¢z —c¢) + Z C_x¢Mz—c), r<|z—c/ <R. (5.1)
AEZ>0 —AEZ<o
We define
0, ifC_y=0forall =X <0_ and C) # 0 for some A€ 2
kE, ifC_y=0forall -A<0_,Cy\=0forall |\ <k-—1,
. and C) # 0 for some \ € Z
orde(9) =0 _ (k£ 1), i Cn=0for| =\ < —(k+1),
and C_ # 0 for some —\ € Z_y,
00, if ¢ =0 in a neighborhod of ¢
The divisor of a meromorphic spinor ¢ not identically 0 is defined by
()= orde(e) - c. (5.2)

ceG

For example, from (2.22) we know that each ¢*(™ gives a meromorphic spinor
on S*. Let 0 denote the point at infinity: C2 U0 = S*. We have

(™) = pn.0—(n+1)-0
(p=mDy = —(n+1)-0+n-0.
Let E be a Divisor. For an open set U C M we define
L(U)={p e M(U); ord,(p) > —E(z) forVzreU.}
Ezxample. We have for E =np, p € M,

LpU) = {e= Y Co 2+ Y. CidM2)}

|=A[>—(n—1) A>04
LpU) = {p= ) C¢*2)}
IAI>n

in a local coordinate around p.
Let p € M. The skyscraper sheaf C,, is defined by

|G, ifpeU,
CP(U)_{ 0, if pé U,

Let E € Div(M) and p € M. We look at p also as a divisor, p € Div(M).
Then E' = E + p € Div(M). We define a sheaf homomorphism

p: Ly — C,

as follows. For an open set U, if p # U then py is the zero homomorphism. If
p €U and ¢ € Lg/(U), then ¢ admits a Laurent expansion around p,

p(z)= Y. Caxd™+ ) Cagh,

Y A>04
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where E(p) =k, hence E'(p) = k+1. Set py(p) = C_), for the smallest —\g such
that C_», # 0 and | — A\g| = —k. Then p is a sheaf homomorphism and we have
the short exact sequence

0—Lg — Lgip, — Cp — 0. (5.3)
Therefore we have the following exact sequence of cohomologies:

0— H°(M,Lg) — H°(M,Lp.,) — C (5.4)
- Hl(Mv ‘CE) - Hl(Mv £E+P) — 0.
Lemma 5.1. Suppose M is compact and let E < E’ be divisors. Then we have an
epimorphism
HY(M,Lp) — H'(M,Lg) — 0.
Theorem 5.2. Suppose E is a divisor on a compact conformally flat four dimen-
sional spin manifold M. Then
dim H°(M, Lg) — dim H' (M, Lg) = deg E, (5.5)
HP(M,Lg) =0 forp>2. (5.6)
Proof. For a divisor E = 0, the assertion follows from the Atiyah-Singer index
theorem (1.3). In fact, for a conformally flat manifold M, the Weyl tensor vanishes
from the definition, and the first Pontryagin number p; (M) is zero.
Let E € Div(M) and E' = E +p. Let V. = Im(H°(M,Lp) — C) and
W =C/V. Then dimV + dim W = 1 = deg E’ — deg E. From the exact sequence
(5.4) we have,
dim H°(M,Lp)) = dim H(M, Lg) +dimV,
dim H'(M,Lg) = dimH'(M,Lg) — dimW.

Hence

dim H°(M, Lg/) — dim H* (M, Lg/) — deg E’
=dim H(M, Lg) — dim H' (M, Lg) — deg E.

Thus (5.5) holds for E (resp. E’) if it holds for E’ (resp. E). In particular (5.5) is
true for every divisor E/ > 0. Any divisor may be written as

E=pi+...4Pm —Pm+1— - — Pn

Hence the first assertion is proved by induction. As for the second part, we know
HP(M,N) =0 for p > 2, that is, H?(M, Ly) = 0 for p > 2. Then, by the same
argument using the exact sequence (5.4) as in the first part, we can prove

HP(M,Lg) =0 for p > 2,

for every divisor E. O
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