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Abstract

We shall give an axiomatic construction of Wess—Zumino—Witten (WZW) actions valuga=n
SU(N), N > 3. ltisrealized as a functor WZ from the category of conformally flat four-dimensional
manifolds to the category of line bundles with connection that satisfies, besides the axioms of a
topological field theory, the axioms which abstract the characteristics of WZW actions. To each
conformally flat four-dimensional manifol& with boundaryl” = 9%, a line bundlel. = WZ(I)
with connection over the spad&; of mappings fromi” to G is associated. The WZW action is
a non-vanishing horizontal section WX) of the pullback bundle*L over ¥G by the boundary
restrictionr : ¥G — I'G.WZ(X) is required to satisfy a generalized Polyakov—Wiegmann formula
with respect to the pointwise multiplication of the field%;. Associated to the WZW action there
is a geometric description of the extension of the Lie greé?i&; due to Mickelsson. In fact, we
have two Abelian extensions 613G that are in duality.
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1. Introduction

Inthis paper we shall give an axiomatic construction of the Wess—Zumino—-Witten (WZW)
action. Axiomatic approaches to field theories were introduced by Segal in two-dimensional
conformal field theory (CFT), and by Atiydh,14]in topological field theory. The axioms
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abstract the functorial structure that the path integral would create if it existed as a mathe-
matical object. Thus a CFT is defined as a Hilbert space representation of the operation of
disjoint union and contraction on a category of manifolds with parameterized boundaries.
The functional integral formalism was also explored by Gawefkio explain the WZW

CFT. Singen16] proposed a four-dimensional CFT in the language of Penrose’s twistor
space, where Riemann surfaces of two-dimensional CFT were replaced by conformally flat
four-dimensional manifolds.

In a four-dimensional WZW model the space of field configurations is the space of all
maps from closed four-dimensional manifolds with or without boundary into a compact Lie
group. We know from the discussions|[it6,19]that the geometric setting for CFT is most
naturally given by the category of conformally flat manifolds. So we adopt this category
of manifolds also for our WZW model. LeE be a conformally flat four-dimensional
manifold with boundaryl” = 9% which may be the empty set. L& = SU(N) with
N > 3. The amplitude of the WZW model is given formally by the functional integration
over fieldsf € ¥G = Map(X, G) with the boundary restriction equal to the prescribed
g € I'G = Map(I; G)

as@ = [ expl2niSs (1)) Df (L.1)
feXG; fIl=¢
whereSx (/) is defined by

Ss(f) = Ik f tr(df Y Axdf) + Cs(f)
>(J) = 1272 |5 ) .
Since we deal with contributions that are topological in nature we omit the first term (kinetic
term). The exponential of the second term

WZ(X)(f) = exp2riCx(f)} (1.2)

is called the WZW action. (1§6,7] it is called an amplitude or a probability amplitude. In
[3] itis called the WZW action.) Whe&' has no boundar¢ s (f) is defined by

Cs(f) = 5703 /B TR (1.3)

wheref is an extension of to a five-dimensional manifol#® with boundarydB® = x.
Since X is a compact conformally flat manifold it is the boundary of a five-dimensional
manifold B°. But it is not clear that we can take such a smooth extensighafer B°. If

X is simply connected it is conformally equivalent to a four-dimensional sphere, and then,
sincerr4(G) = 1, there exists a smooth extensionfofo the five-dimensional disb® and
Cqa(f) is defined up tZ, that is, exp2ziCga(f)} is well defined. The problem arises as to
how to define the action WZ) (/) for generalX’ without boundary. On the other hand, in
(1.1) we are dealing with a four-manifold with boundary, so we must also give the definition
of the action W4 X)) (f) for X with non-empty boundary. The above discussions lead to the
following conclusionA four-dimensional WZW model means to assign a proper definition
of the actionWZ (%) () to every compact conformally flat four-manifatiwith or without
boundary.
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We shall construct the actions WX) as the objects that satisfy several axioms. Our
WZW actions are associated to four-dimensional manifolds with boundary and respect the
functorial properties of various operations on the basic manifolds. Hence we impose on
WZ(X) several axioms that are similar to those of topological field theories. Axioms of
topological field theories were introduced by Atiydh. They apply to a functor from the
category of topological spaces to the category of vector spaces. Gavy@dekplored in
the same spirit the axioms which characterize the amplitudes of two-dimensional WZW
theory. Since our objects are not the amplitudes but the actions of the field, we describe
our four-dimensional WZW theory as a functor WZ from the category of four-manifolds
with boundary to the category abmplex line bundlesThis functor is required to satisfy
the involutory axiom, the multiplicativity axiom and the associativity axiom that represent
respectively the orientation reversal and the operations of disjoint union and contraction of
the basic manifolds. Next we shall introduce two axioms that are characteristic of WZW
models. We know that the action functional in field theory has topological effects, that is,
it gives rise to the holonomy of a connection. So we require as our next axiom that the
action WZ %) gives rise to a four-dimensional analog of parallel transport associated to
a connection of the complex line bundle. Higher-dimensional parallel transports as well
as holonomies were discussed by TerasHih74, following the idea of GawedzKir] that
relates isomorphism classes of line bundles with connection adé theholonomy coming
from WZW action. The fundamental property of the WZW action is its behavior under the
pointwise multiplication of fields. It is expressed by the Polyakov—Wiegmann forfh]a
and its generalization to four-dimensional sphere was given by Mickel&8@rAs our last
axiom we demand that WZ) satisfies the generalized Polyakov—Wiegmann formula over
X'G. More precisely, the WZW actions can be stated as follows. A four-dimensional WZW
model means a functor WZ that assigns to each manifyldnd its boundary™ = 9%, a
line bundleL = WZ(I) over the space of magsG, and a non-vanishing section WX)
over XG of the pullback line bundle* L by the boundary restriction map. XG — I'G.

The functor WZ satisfies the axioms of topological field theories. We demand that each
line bundle WZ4 I has a connection and that W) is parallel with respect to the induced
connection on*L. We impose moreover that ofiL there is defined a product which is
equivariant with respect to the product &it; through the Polyakov—Wiegmann formula

WZ(Z)(fg) = WZ(Z)(f) * WZ(Z)(g) for fge XG. (1.4)

We shall see that WZ) is a positive integer for a compagt.

Here is a brief summary of each section.3action 2 we explain following[16] that
the category of conformally flat manifolds fits most naturally the construction of axiomatic
CFT and our WZW maodel. Irsection 2.2ve introduce the axioms of our WZW model.
Gawedzki6] gave two line bundles in duality over the loop space LG that correspond to the
2-cocycles obtained by transgressing the 3-curvatur@.dn the same spirit we shall give
in Section 3wo line bundles WZs3) and WZ((52)’) in duality overfng that correspond
to the 2-cocycles obtained by transgressing the 5-form G\/éﬂereQSG is the space of
smooth maps frons® to G that have degree 0. In fact, we have a 2-form(lﬁG

p= ﬁ fs RUCKE 3, (1.5)
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which generates the integral cohnomology cIH§$QgG, Z). Hence it defines a line bundle
with connection onQSG with the curvatures. This is WZ(S%). Let DG be the space of
maps from a hemisphei2to G and letD’G be the space of maps for the other hemisphere.
We shall give a non-vanishing section \\Z) of the pullback line bundle of W&?3) by

the boundary restriction map: DG — QSG. Intuitively WZ(D)( f) is the holonomy
associated to the curvatupgeover the four-dimensional path € DG. Similarly, we have

a non-vanishing section W2') of the pullback line bundle of WZs%)') by ¥ : D'G —

QSG. The connections on WZ&3) and WZ((S3)') are given inSection 3.8with respect

to which WZ(D) and WZ D’) are parallel, respectively. 18ection 4we construct the
functor WZ. The line bundle W@Z) is defined as the tensor product of WZ) for each
boundary componerit; parameterized by, while each WZT;) is defined as the pullback

of WZ(53) or WZ((5%)’) by the mapl;G — S$3G coming from the parameterization.
The non-vanishing section WZ) of r* WZ(I') is defined from the non-vanishing sections
WZ (D) and WZ D") by cutting and pasting methods and by using the dual relations, i.e.
the associativity axiom. The connection on WZ is induced from those on WZ&3) and
WZ((53)) by a standard procedure. WZ satisfies the axioms that abstract the functorial
structure of the WZW actions. In particular, we have the Polyakov—Wiegmann formula
generalized t&'G for any conformally flat four-manifold. In Section 5we shall discuss
extensions of the Lie grou@SG. It is a well known observation that the two-dimensional
WZW action gives a geometric description of central extensions of the loop {2@]pThe
U(1)-principal bundle oves’ng associated to the line bundle W), however, does not
have any group structure. Instead Mickelsgld}j gave an extension GPSG by the Abelian
group Mag.As, U(1)), where Az is the space of connections 6A. We shall explain two
extensions of Mickelsson’s type that are dual to each other.

2. Axiomsfor afour-dimensional WZW model
2.1. Category of conformally flat manifolds

The basic components of four-dimensional CFT are some well behaved class of four-
dimensional manifoldg/ with parameterized boundaries, together with the natural opera-
tions of disjoint union

(M7, M2) — M1 U Mo,
and contraction
M — ]\71,

where M is obtained fromM using the parameterization to attach a pair of boundary
three-spheres to each other. A four-dimensional CFT is then defined as a Hilbert space rep-
resentation of the operation of disjoint union and contraction on these basic components.
Now we know that the geometric setting for this CFT is most naturally given by the con-
formal equivalence classes of conformally flat four-dimensional manifolds. This fact was
explained by Sing€ll6], Zucchini[19] and Mickelsson and Scdtt1].
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Here we shall see followinfl6] the fact that the class of compact conformally flat
four-dimensional manifolds with boundary is closed under the operation of sewing mani-
folds together across a boundary component. For any conformally flae¢ developing map
M — $*is a well-defined conformal local diffeomorphism. A closed 3-manifsld M
is called around S in M if it goes over diffeomorphically to a rounsf in $* under de-
velopment. This is well defined because the developing map is unique up to composition
with conformal transformations. For standavfl the boundaryyM consists of a disjoint
union of rounds®s[13]. For each boundary componeRibne can find a neighborhood of
Bin M and a conformal diffeomorphism of this neighborhood onto a neighborhood of the
equator in the northern hemispheresdf If we have two boundary componersand B of
M and an orientation reversing conformal diffeomorphigm B — B, thenB and B can
be attached using and the resulting manifold will have a unique conformally flat structure
compatible with the original one o#.

2.2. Four-dimensional WZW model

Now we give the precise definition of a four-dimensional WZW model.

Let M4 be the conformal equivalence classes of all compact conformally flat four-
dimensional manifolda/ with boundaryoM = U;¢; I'; such that each oriented component
I is a rounds®, and is endowed with a parameterizatipn: S — I7;. We distinguish
positive and negative parameterizatigns: S3 — I7,i € I+, depending on whethgr,
respects the orientation @t or not.

Let M be the category whose objects are three-dimensional manifoldgich are
disjoint unions of rounds®’s. A morphism between three-dimensional manifolgisand
I is an oriented cobordism given By € My with boundaryd X = I> U (I']), where the
prime indicates the opposite orientation.

Let £ be the category of complex line bundles.

Let G = SU(N), N > 3. In the following, the set of smooth mappings from a manifold
M to G that are based at some pojt€ M is denoted byiG = Map(M, G). MG becomes
a group under product of mappings. FoEas M4 with boundaryl” = 9%, r denotes the
restriction map

r.:XG — IG, r(f) = fII* (2.1)

A four-dimensional WZW model means a functor WZ from the categetyo the category
L which assigns:

(WZ1) to each manifold™ € M, a complex line bundle W@ over the spacéG;
(WZ2) to each¥ € My, with 90X = I', a non-vanishing section WZ) of the pullback line
bundler* WZ(I).

Recall that the pullback bundle is by definition

PFWZ(D) = {(fu) € EG x WZ(I'), 7u = r(f)}, (2.2)
and the section W) is given atf € X'G by

WZ()(f) = (fu) with u € 7720 (f)) = WZ(T ) p).
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WZ being a functor fromM to £, a conformal diffeomorphisre : It — I induces
an isomorphism W#x) : WZ(I'1) — WZ(I>) such that WZBa) = WZ(B)WZ(«x) for

B : I — I3. Also if o extends to a conformal diffeomorphisiy — X5, with 9X; = I3,

i =1, 2, then WZ«) takes W4 X1) to WZ(X>).

The functor WZ satisfies the following axioms. A1-A3 represent in the category of line
bundles the orientation reversal and the operation of disjoint union and contraction. These
axioms are stated in the same manner as in topological field thg¢bliesxioms A4 and
A5 are characteristic of the WZW model:

(A1) Involution:
WZ(I'") = WZ(D)*, (2.3)

wherex indicates the dual line bundle.
(A2) Multiplicativity:

WZ(I'L U %) = WZ(I') @ WZ(I%). (2.4)

(A3) Associativity: For a composite cobordislh= X1 Up, X suchthabX; = I U I3
andoX, = I> U I}, we have

WZ(Z)(f) = (WZ(Z1)(f1), WZ(Z2)(f2)) (2.5)
forany f € XG, f; = f|%;,i =1, 2, where(-, -) denotes the natural pairing
WZ(I) @ WZ(I'3) @ WZ(I3) @ WZ(I2) — WZ(I'1) @ WZ(I2). (2.6)

More precisely, let WZX1)(f1) = (f1, u1 ® v) and WZ(X2)(f2) = (f2, u2 ® v) with
u; € WZ(I) fori = 1,2, andv € WZ(I'3), v' € WZ(I). From the definition:; €
r XS0, v € n7Y(f1lIB) andy € wL(f2] ). On the other hand, let WZ)(f) =
(f w1 ®w2) € WZ(I't) @ WZ(I) with w; € 7~ 1(f|I}) fori = 1, 2. Then axiom A3 says
thatw; ® wz = (v, v)uz ® uz. The multiplicative axiom A2 asserts thadbi’ = I U (17),
then WZ( X)) is a section of

rEWZ(I}) ® rs WZ(I'2) = Hom(rf WZ(I'1), rs WZ(I)). 2.7)

Therefore any cobordisn betweenl;, and I'; induces a homomorphism of sections of
pullback line bundles

WZ(Z) : C®(Z, rf WZ(I7)) — C®(Z, r3 WZ(I2)). (2.8)

We impose:
1. WZ(¢) = Cfor¢the empty three-dimensional manifold (2.9
2. Wz(shH =1, (2.10)
3. WZTI x [0, 1)) = Id(WZ(I) — WZ(I)). (2.11)

Corollary 2.1. If X has no boundaryd> = ¢), thenWZ(X) < C.

The following axioms are characteristic of WZW models:
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(A4) For eachX € My with I' = 9%, WZ(IN) has a connection, and WZX) is parallel
with respect to the induced connection/6nWZ(I").

(A5) Generalized Polyakov—Wiegmann formula: For eatk M4 with I' = 3%, on the
pullback line bundle* WZ(TI) is defined a product with respect to which we have

WZ(Z)(fg) = WZ(D)(f) * WZ(Z)(g) forany f ge XG. (2.12)

The well-known Polyakov—Wiegmann formula extended by Mickel§46his concerned
with the case of the four-dimensional sphefe= S*.

From now on we shall construct the functor WZ step by stefSdntion 3.5ve shall
construct two line bundles ovéPG, which are WZ.53) and WZ((S2)"). In Section 4we
give the functor WZ of WZW actions step by step starting from 82 and WZ((53)).

3. Linebundleson 23G
3.1. 23G

In the following, we denote by23G, instead of$3G, the set of smooth mappings
from an$3 to G = SU(N) that are based, i.ef(p,) = 1, at some poinp, € 3. Itis
known that23G is not connected and is divided into denumerable sectors labeled by the
soliton number (the mapping degree). Here we follow the explanation due to $irkjer
of these facts, see al$d,9]. Let the evaluation map, evS3 x 223G — G, be defined
by evim, ¢) = ¢(m),m € §3, ¢ € £23G. The Maurer-Cartan forng~1dg on G gives
the identification of the tangent spafeG ate € G and LieG = su(N). The primitive
generators of the cohomolody* (G, R) are given by

1 1413 o ~1 45
w3=—75(g dg  ws=—o5t(g T dg) ... (3.1)

Integration ons® of the pullback ofvy;_1 by the evaluation map ev gives us the following
2(k — 2) form on$23G:

_ (1 -2 121

In particular,vs is the mapping degree ¢f
degy = o / tr(dp ¢ 13 (3.3)
247'[2 3

Proposition 3.1.

_ d .
1. $3Lie 62365 s 0is exact
2. degp: - 92 = degy: + degyz,

see[4,9].
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3.2. 2-cocycle o5*G

Let P be aG-principal bundle oves*. Let A be the space of connections Bg that are
Lie G-valued 1-forms orPg. LetG = S*G be the group of based gauge transformations.
The action oG on Ais given byA, = g~*Ag+g tdgfor A € Aandg € G. F = F(A) =
dA + A2 denotes the curvature 2-form af

The Chern-Simons form oB; is

w(A) = tr(AF? — 2A3F 4+ L 45). (3.4)

We have then (F3) = dw2(A).
From Zumino[20] we know the relation

w(Ag) — wd(A) = daa(A; g) + A tr(dg - g7H)°
with
aa(A; g) = r[—3V(AF + FA — A%) + 1(vA)? 4 1v34], (3.5)

whereV = dg- g~ 1.
Let D® be a five-dimensional disc with boundarp® = S*. Integration oveD® gives
us thegauge anomaly

i
(A, 8) = 70— [S TI=VAF+ FA— 4%) + 3 (VA + V3A] + Cs(9),

- PN
C5(9) = 5755 /D g g7, (36)

hereg € $*G is extended td°G, in fact, we have such an extension by virtuesfG) = 1.
Cs(g) may depend on the extension but it can be shown that the difference of two extensions
is an integer, and ex@riCs(g)) is independent of the extension.

We put, for £ g € $*G,

WL =553 fS e EY = g /S RUCITRR T
- %(dg gt )2+ (dggH3 ()] (3.7)
and
o(fg) =TI(f"1df g =y(f g + Cs(g). (3.8)

Remark 3.1. Here we shall look at Mickelson’s 2-cocycle for his Abelian extensioatd:
[10]. The cochainys in (3.5)is a one-cochain on the growdG, valued in Mag.A4, R).
The coboundaryay is given by

Saa(A - g1, g2) = dB + aa(gy tdg1; g2),
B(A; g1, g2) = —tr[3(dg2 g5 ) (g7t dg1) (g7 *Agn)
— (dg2 851 (g7 Ag) (g7 1 dg)].
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Mickelson’s 2-cocyclev, (A; f, g) is defined as the integration &d4(A; g1, g2) over any
regionA c §*

[
A; = — A; . .
yaA: £ 9) 24713/A8°‘4( 9 (39)
But for A = §4, itis independent oft and
Ysa(A; f8) = fsA Saa(A; f g) = /S4 aa(frdfg) = ¥(£g) (3.10)
for f g € S*G. Hence, instead afg(A; £ g), we use more simplg( £, g) for our purpose.

Remark 3.2. We have

Y(F, G) = yp(A; F, G) + yp(A; F, G) (3.11)
for any A € A4. HereD is an oriented hemisphere 8f and D’ is the other hemisphere:
DUD =S4
Lemma 3.1 (Polyakov-Wiegmann)For f. ¢ € S*G we have

Cs(fg) = Cs(f) + Cs(g) + ¥(f g) mod Z. (3.12)

The following formula was proved by Mickelss¢i0, Lemma 4.3.7]

Cs(fg) = Cs(f) + Cs(g) + ysa(A; £ g) mod Z.
Sinceyga(A; f, g) = y(f, g) from (3.10)we have the proposition.

3.3. Line bundle W#)

Now we are prepared to define the line bundle MZover Magds?, G) = ¢, and
the section WZS*) of the pullback line bundle of W@) by the empty restriction map
r: 8% — ¢.

Let Ly be the quotient 084G x C by the equivalence relation

(f.0) ~ (g, cexprio (£ [~ g)). (3.13)

ThenLy is a line bundle over Maps*, G) = ¢ with the transition function ex@riw
(f f~1g)}, which we shall define as W#). Recall thatS*G is contractible. We have then

WZ(¢) ~ C. (3.14)
The isomorphism is given by

[fic] = cexpl—27iCs(f)}.

Itis well defined because of the Polyakov—Wiegmann formular 1L ¥{Z (¢) be the pullback
line bundle of WZ¢) by the empty restriction map: S*G — ¢. The section WZs%) of
r*WZ(¢) over anyf € SG is given by

WZ(S*(f) = [ £ expi2riCs(f)}] € WZ(#). (3.15)
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By the isomorphism 0of3.14)we can also write
wz(s*h =1¢eC.

We can define the product on the line bundle @y~ C in an obvious way, but we shall
look this product more precisely, rather superfluously, for the sake of later sections. In
$4G x C we define the product by putting

(f a) * (g, b) = (fg, abexp{27iy(f &)}). (3.16)

Since the equivalence relatigB.13) respects the product, it gives a product on the line
bundle WZ¢). The Polyakov—Wiegmann formu(&.12)is stated as follows:

WZ(S*) (fg) = WZ(SH(f) * WZ(SH(g) for fge S*G. (3.17)
3.4. Notations and definitions

In this section, we shall prepare some notations, definitions and elementary properties
that will be used in the following sections.

Let £2°G be as before the set of smooth mappings fhto G = SU(N) that are based.
223G is not connected but divided into the connected components by deg. We put

23G = (g € 2°G; degg = 0}. (3.18)

The oriented four-dimensional disc with bounda#y/ is denoted byD, while that with
opposite orientation is denoted Y. The composite cobordism @i and D’ becomess*.
We write as befor®G = Map(D, G) andD'G = Map(D’, G). The restriction ta2 of an
f € DG has degree 0f|S2 € 23G.

For ana € QgG we denote byDa the set of thosg € DG that is a smooth extension
of a, respectively,D’a is the set of thosg’ € D’G that is a smooth extension ef For
f € Daandg € Db one hadg € D(ab), and every element ab(ab) is of this form.
Similarly for D’(ab). We denote by v g’ € S*G the map obtained by sewinge DG and
g € D'(g|S%).

The prime will indicate that the function expressed by the letter is definef) pfor
example, 1lis the constant functio®’ > x — 1'(x) = ¢ € G, while 1 is the constant
functionD > x — 1(x) = e € G. We write

Df={feDG:f 5= fIs%, Df' = {f e DG: f|S3 = f/|53).

Let £ g € DG and f]S3 = g|$3. From(3.7) and (3.8e see thay(f v f/, f g v 1)
andw(f Vv f, f~1g v 1) are independent of’ € Df

WV, fgv)
48713/ tr [(dgg Y ldpl 4 (dgg‘lf Ydpn2+deg 3 ldf)}
(3.19)

Similarly, for f/, g’ € D'G such thatf’|S° = ¢'|S3. y(g v ¢, 1V (&) 1f) andw(g v
g, 1v (g)~1f") are independent of € Dg. Hence exfriw(f V -, f~1g v 1)} and
expl2riw(- v £/, 1v (f))~1g)} are constants df/(1).
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Definition 3.1.
1. We put, forf, g € DG such thatf|S3 = g| 3,

x(f §) = exp2rio(f v -, fTrg v 1)), (3.20)
2. We put, forf’, ¢ € D'G such thatf’|S° = g'|S3,

X (f' ¢ = exprio(- v [/, 1v () gh). (3:21)
Lemma3.2.

1. For f g € DG such thatf|S® = g|S3, we have(f g) € U(1) and
exp2riCs(g Vv )} = exp(2niCs(f Vv f)Ix(f g) forany f e D'f. (3.22)
2. For f', g € D'G such thatf’|$® = ¢/|S%, we havey'(f', ¢') € U(1) and
exp2riCs(f v ¢)} = exp2riCs(f v X' (f',¢) forany f e Df’. (3.23)

The lemma follows from the Polyakov—Wiegmann formula.
3.5. Line bundles WZ&?3) and WZ(S3)")

Now we shall give two line bundles o@gG that are dual to each other. We shall follow
the arguments due to GawedZgj| that were developed to construct two line bundles in
duality over the loop groupG and to give the definition of WZW action on a hemisphere.

We consider the following quotient:

L=DGxC/~, (3.24)
where~’ is the equivalence relation defined by

(f, )~ (g,d) ifandonlyif f1S°=g|S3 d =¥ (f, g). (3.25)
The equivalence class ¢f”, ¢’) is denoted by [, ¢/]. We define the projection

i L — 3G
b}/ n/([f/’, ) = f'IS3. L becomes a line bundle oﬁS’G with the transition function
g E\ilcdrigrecisely, let: € QSG and takef’ € D’a. A coordinate neighborhood afis given
by

Up ={gIs% ¢ € Vpl,

Vi = (g e DG, g =expX . f; X e D'(LieG), | X|| < 8}.

The local trivialization ofL is given by the mag~1(U ;) > [/, '] — (]S, ¢')

JT_l(Uf/) > Up x C.
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The transition functioryUf,,Ug, (b) of L atb € Uy N Uy becomes as follows. Lét €
Up NUy. Leth’ € Vp andk’ € V,y be such that'|S® = k'|S® = b. Foré = [, '] =
[k, d'] € n~1(b) we have obviously’ = x'(h’, k')c'. Hence

XU,uy (b) = Y (W', K). (3.26)

The line bundleL is what we wanted to construct and will be denoted by(8#3.

In regard to the involution axiom Al which W3 is required to satisfy we must define
another line bundle oﬂgG corresponding t&° with opposite orientation. This line bundle
WZ((53)) is defined by

WZ((5%)) =DG x C/ ~ (3.27)
with the equivalence relation
(f )~ (g.d) ifandonlyif 7153 =g|s3 d=cx(fg. (3.28)

The projectionr : WZ((5%)) — 23G is given by [ c] — £IS3. Itis a line bundle with
the transition functiorx( f, g).

WZ(53) and WZ((53)') are in duality so that the involution axiom A1 is verified for these
line bundles. In fact, the duality

WZ(S%) x WZ((5%)) - C
is defined by
([f'. 1. [fc]) = cc exp{—=2riCs(f Vv [N}, (3.29)

wheref|$3 = f'|S® € 23G. If we note the evident fact tht , 1v 1') (resp.y(F, h v 1))
in (3.19)is given by an integration ovdd’ (resp.D), we see that the product of transition
rules(3.25) and (3.28)mply the transition rulé€3.13)of WZ(¢)

x(£OX(f &) =exp2rio(f Vv f, f e v (FH L) (3.30)
Hence
WZ(S%) ® WZ((5%)) = WZ(¢). (3.31)

Composed with{3.14)this implies the above duality.

3.6. Non-vanishing sections \WWZ) and W4 D’)

Letr : DG — S3G andr’ : D'G — S3G be the restriction maps.
We put for f € DG,

WZ(D)(f) = [, expl27iCs(f Vv f)}] € WZ(S3)]r( ). (3.32)

Then we see from Lemma 3.2 that \WZ) gives a non-vanishing section of the pullback
line bundler* WZ(S3).



T. Kori/Journal of Geometry and Physics 47 (2003) 235-258 247

In the same way we put fof’ € D'G,
WZ(D)(f") = [f, exp27iCs(f v [)}] € WZ((S*)) (s (3.33)
WZ(D') defines a non-vanishing section(@f)* WZ((53)’).

Proposition 3.2. For f € DG andf’ € D'G such thatf|s3 = f/|53
(WZ(D)(f), WZ(D')(f")) = WZ(SH(f v f)). (3.34)

In fact, both sides are equal to €2aiCs(f Vv f)}.
3.7. Products in*WZ($%) and (')*WZ((S3)")

The total space of the pullback bundteWz(s3) is written as
r*WZ(S%) = {(£2); f € DG, & =[f, 'l € WZ(5%)(s))-
We define the product it WZ(53) by the formula
(2 * (g w) = (fg, v), (3.35)

where, forx = [f',d'] € WZ(5%),(r) andu = [¢/,b'] € WZ($%)q), v = [f'g. ] €
WZ(853),1g) is defined by

c =db exp2riy(fv f,gVv gl (3.36)

v does not depend on the representations afid.., and the product is well defined.
We have

WZ(D)(fg) = WZ(D)(f) * WZ(D)(g) for f g€ DG. (3.37)
In fact, this follows from the definition:
WZ(D)(f) =[f", exp(27iCs(f Vv )],

and the Polyakov—Wiegmann formula.
Similarly we have the product o’)* WZ((S3)') over D'G. It is given by

(f o=@ B =(¢ . (3.38)

where fore = [fa] € WZ((S%)), (s andp = [g, b] € WZ((5%)), (¢, v = [fg, c] €
WZ((53)),(f¢ is defined by

c = abexp(2riy(f Vv f',gVv &)} (3.39)
We have
WZ(D')(f'g') = WZ(D')(f')  WZ(D')(¢)) for f', & € D'G. (3.40)

We note that product operations 6iWZ (53) and on(+')* WZ(($2)’) are compatible with
the duality

FWZ(S3) x ()" WZ((53)) = WZ(¢) ~ C, (3.41)
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thatis, for(f, 1), (g, 1) € r* WZ(S%) and for(f’, 1), (¢, ') € (')* WZ((53)") such that
r(f) =7 (f) andr(g) = r'(g’), we have
()% (g ), (foa)x (g 1))y = () % (u, 1), (3.42)

the right-hand side being the product in \Z ~ C.
3.8. Connections oWZ(S3) andWZ((S3)")

Next we define a connection on W). They are described as follows. Liete QSG
andU s be a coordinate neighborhood describe&éttion 3.50nU s we put

6, (B)(X) = @ /D () dx (3.43)

forh € D'bandX € D'(Lie G). We have

GUg/ = eUf/ + (XUf/,Ug/)_l dXUf/,Ug/»

wherexy Uy is the transition function of WZs3)
XU;.Uy (b) = x'(', k)

forh’ € D'bNVyp andk’ € D'b N Vy. We have a well-defined connectiéron WZ(S3).
The curvature off becomes

FX,Y)=— . tr(V3(xdy —ydx)), V=dfr1ss (3.44)

247'[3 S
The calculation for these formula is the same g&j8,10]

Similarly we have a connection on W&3)) represented by a formula parallel(®&43)
but integrated orD.

On the pullback bundle* WZ(S3) there is an induced covariant derivative

*xs(f) = (Vrxr:8) (r(f)),

wherer,s is the section of WZS3) defined byr,s(b) = s(f) = [f/, ¢'] € WZ(53), for an
(and any)f € Db. X is a vector field orD, hencer, X is a vector field ors®.

Similarly the covariant derivative on WZS3)') is defined.

The sections WZD) and WZ D’) are parallel with respect to the respective covariant
derivation. This follows almost from the definitions by virtue of the infinitesimal form of
the Polyakov—Wiegmann formula:

d i .
—| Cs(fe%) = 4%713/ tr(f~tdp3dx for X € S*LieG), f e S*G.
=0 54

dr|._
(3.45)
Proposition 3.3.
vWZ (D) =0, (3.46)

YWZ(D') = 0. (3.47)
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Remark 3.3. We could consider in the following construction of the WZW model those
line bundles WZ(S3) associated to theth sector of©23G, but for a fixeds. However, in
the sequel we shall restrict our discussion only to the contractible comp@ﬁeht

4. Construction of WZW actions
4.1. Line bundlavz (")

Let X e My4. ThenX is a conformally flat manifold with boundaby’ = I' = U;¢, I7U
Ujer_ I with I; a parameterized roursf in X.

For ani € I_ & I, the parameterization defines the map. S — I}, and the map
pi i G — £23G, which we denote by the same letter. Then we have the pullback bundle
of WZ(83) (resp. WZ(53))) by p;. We define

WZ(I}) = pf WZ(S®) for ie I, WZ(I}) = pfWZ(($%) foriel,, (4.1)
then we have, respectively,

WZ(I}) = pf WZ((§3)) foriel_, WZ(I}) = pf WZ(S3) for i€ I,.
(4.2)

The line bundle WZI) is defined by
WZ() = @ WZ(I}) ® ® WZ(I3). (4.3)

iel_ iely

Now leta : $° — $2be the restriction 082 of a conformal diffeomorphism off*. First we
suppose that preserves the orientation. Then, since the transition fungtisninvariant
underq, the line bundle WZS3) is invariant under. If o reverses the orientation then
D is mapped taD’ and x is changed tg¢. Thena* WZ(53) becomes WZ($3)’). On the
other hand, the parameterizatignsare uniquely defined up to composition with conformal
diffeomorphisms. Therefore WZ) is well defined for the conformal equivalence class of
I e M.
The dual of WA is
WZ(I) = @ WZ(I7) @ ® WZ(I7), (4.4)

iel_ iely

and the duality; WZIN) x WZ(I'') — C, is given from(3.29)by

<,® [fi.c]l® ®[gidl ®[ficl® ® [gé,d£]>
iel_ iely iel_ iely

= IMie;_cic) - Mier, didj exp{ —2mi Y Cs(fi v ) — 27i Y Cs(gi v g})

iel_ iely

The above defined WZ) satisfies axioms Al and A2.
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4.2. Non-vanishing sectiovZ(X)

In the following, we shall define step by step the section(\Wyof »* WZ(I') for any
Y € My with the boundaryX = I"andr : G — IG.

We obtain a compact manifol# € My without boundary by sewing a cogy; of D
alongr; fori € I_ and a copyD; of D' fori € I

==(Un) UsU (Un

iel U U I \iely
For each boundary componefitof I" the parameterizatiop; is extended to a parameter-

izationp; : D; — Dif i e I_,andp; : D; — D' if i € I.. The extension is unique up to
composition with conformal transformations, seection 2.1

We put
WZ(Dy) = (pi)* WZ(D), (4.5)
WZ(D;)) = (pi)* WZ(D'). (4.6)

Fori € 1, WZ(D;) is a section of the pullback bundle of WZ) by the restriction map
ri © DiG — TG, and WZ D)) is a section of the pullback bundle of WEZ') by the
restriction map, : D;G — I;G. Similarly, fori e I, WZ(D;) defines a section of the
pullback line bundle of WZI}) by r;, and WZ D;) is a section off WZ(I7).

1. Let>; € Myandsuppose thatthe compactified spa@g°® is simply connected, that s,
¥ is a subset of* deleted several disds;; i € I_ andD}; i € I with parameterized
boundaried™ = U;ey_ I} U Uiy, I Let

D1 = (XI> WZ(D;) ® : WZ(Dj), 4.7)

iely iel_

@ is a section of the pullback bundle of WE’) by the restriction map

UpivJbi|e—>[UrnvUr ]G

iel_ iely iel_ iely
Then WZ( %) is defined by the duality relation
(WZ(X1), @1) = WZ(5% = 1. (4.8)

In fact, givenf € ¥1G, take f; € D;G,i € I, andf/ € D/G,i € I_, in such a way
that f|I7 = filI},i € Iy, andf|I; = fj|I},i € I-.LetWZ(D;)(fi) = (fi, ui), i € I,
and WZ(D’J.)(f]f) = (f’, u;), j € I_. By the definition

u; € WZ(Fil)fi(fi) and u/J € WZ(E;)r}(f;)'
Then®a((fiiery, (f)jer) = (fdiery, () jer_. Qier ui ® ®jer_u’y). Thereis a
ve @ WZ(I)y(f) ® @ WZ(Ipyp1y = WZ(Dr(p),
jel_ iV

iely
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such that(v, Qjer, u; @ ®j€[711t/j) = 1. The definition of WZD;) and WZ D)) imply
thatv is independent of f;, f/}, but depends only oyf.

Thus WZ(X1)(f) = (f v) is well defined as a section of the pullback bundle of
Wz byr: ¥1G — IG.
. LetXo = $2 x [0, 1]. We define

WZ(EO) == 1WZ((53)’)®WZ(53)' (49)
Then we have
(WZ(Zo), WZ(D) ® WZ(D')) = (WZ(D), WZ(D')) = 1.

This is concordant with the definition in Step (1).

. We shall call &1 € M4 described in (1) that is not of cylinder typdasic component

Any ¥ € M4 can be decomposed to a sum of several basic components that are patched
together by their parameterized boundaries:

N
r=J= (4.10)
k=1

The incoming boundaries af}; coincide, respectively, with the outgoing boundaries
of X_1 up to their orientations, that is;"*l = (I"ik)’, and X is obtained by patching
together these boundaries. Then there is a duality ot M§z%) = (pf~1* Wz((s%))
and WZ(I'*) = (p)* Wz($%). Using a suitable Morse function i, we may suppose
that the parameterized boundarigsi € I_ of X are all contained in the boundaiy;
andrl;;i € I are indXy. Then we define

WZ(Zo U X1) = (WZ(Z2), WZ(Z1)). (4.11)
Here(-, -) is the natural pairing (contraction) between the line bundlgs. WZ(I;) ®
®jeJ$WZ(Fj) and ®jeJEWZ(Fj) ® ®keJ£WZ(Fk). Here we have writted¥1 =
Ujejil“j UUer I; and oy = UkeﬁFk U Ujejgl“j, hence W4X», U ) is a sec-
tion of the pullback line bundle oR;c; WZ(I}) ® ®k€]§_WZ(Fk) by the boundary
restriction map

ri (22U X1)G — UE-GU UFkG,

iel ke 2

see the explanation after A3 8kction 2.2

Lemma4.l. LetXY = X1 U Yo U X3. Let their boundaries be

821:)/1UF2/UF3, 322:)/2UF§UF1 and 323:)/3UF]/_UF2.

Then we have

(WZ(X1), WZ(X2)), WZ(X3)) = (WZ(X1), (WZ(X2), WZ(X3))). (4.12)

This is merely the problem of forming a tensor product of several line bundles, that is a
commutative operation.
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By virtue of this lemma we can form successively

WZ(Z U Xy U--- U X)) = (WZ(Z)), (WZ(Xk-1)), ..., WZ(Z1))---).
(4.13)

This is independent of the order of partition and is also independent of how to decompose
»® = 3 U Z4-1) U---U Xy, but depends only o&® . Therefore

WZ(Z) =WZ(XyU Zn_pU---UZXq

is well defined as a section of the pullback line bundleef; WZ(I7) ® ®;cr, WZ(I7)
by the boundary restriction map.

From the construction, WZ") satisfies axiom A3.

Now let X' € M4 be compact without boundary. L&y andX» be the basic components
such thaty = ¥1 Ur X». Suppose that

oz =r=Jr. 0z =r=Jr.
iel iel

Then from the definition of WZX;), i = 1, 2, we see that

WZ(X) = (WZ(X5), WZ(Z1)) = <®WZ(D;), ®WZ(D,~)> = Z 1.
iel iel el

Thus we have the following proposition.

Proposition4.1. ForanyX € Mgwhichis compactwithout boundawyZ (X)) is a positive
integer.

Proposition4.2. LetX € MgandletZ be obtained fronk by identifying the boundaries
Iiel_,andl}, je Iy, viap; - (p)~t: I} — Ij.Then

Wz () = trj WZ(%), (4.14)

wheretrjj are the trace mapgontractior) between* WZ(I'/) andr* WZ(I';) in the tensor
product®ie; WZ(I7}) ® Qier, WZ(I7).

Connections on WZ';) and WZ(I/) are defined naturally as the induced connections
by (4.1) and (4.2) Obviously, WZ D;) and WZD,) are parallel with respect to these
connections. By the formulas of definitiof$.3), (4.8) and (4.13ve have a naturally
induced connection on WZ) with respect to which WZX) is parallel. Therefore axiom
A4 is verified.

Remark 4.1. Let ¥ € M4andthe boundary’ = 9X be suchthal” = Ujes, ITUU;es_I7
with I; a parameterized rounsf. Let . denote, respectively, the restriction maps onto
Qier. (I7G). Then

WZ(2) :rt ( ® WZ(E-)) — < ® WZ(F,-)> ,

iel_ iely
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WZ(X)(f)for f € XG isthe higher-dimensional parallel transport along the “patfL7].
Whenl, = ¢ or I_ = ¢ we call WZ(X)(f) the higher-dimensional holonomy alorfg

4.3. Polyakov—Wiegmann formula

To see that the functor WZ satisfies the axioms of WZW model it remains for us to verify
the axiom A5, the Polyakov—Wiegmann formula on evétye M,4. We have already
seen the Polyakov-Wiegmann formula $hG, DG andD'G in (3.17), (3.37) and (3.40)
respectively.

Let X' e M4 with parameterized boundari€s= U;c;_I'; U U ¢y, I';. We shall use the
same notation as i8ections 4.1 and 4.Zhen the product on each pullback line bundle
rfWZ(I}), (r')F WZ(I3), rf WZ(I)) and (')f WZ(I7) is defined in an obvious manner,
and the non-vanishing sections \WZ;) and WZ(D;) for i € I. satisfy the respective
Polyakov—Wiegmann formula

WZ(Di)(fg) = WZ(Di)(f) * WZ(D;)(g), etc

The products on the line bundfe= ® je;_ (r)* WZ(I')) ® ®;er, (ri)* WZ(I}) and on the
line bundleS* = Qje; (r/l.)* WZ(F//.) ® Qier, (r))* WZ(I) are defined by tensoring the
product on each’ WZ(I;), etc. We note also that the products are compatible with the
duality

(s B, A ) = (o, &) * (B, )

fora, B € Sanda, u € S*. Where the product in the right-hand side is that in i~ C.

Now suppose thal is a subset of* deleted several disd3;, i € I.Letr : XG — I'G
be the restriction map. Then the product:6tWZ (I is derived from the product oS In
fact, if we writer(f) = (ri(fi);i € Ly, r}(fj’.); j € 1) as in the argument @&ection 4.2
then WZ(D),(¢y = S,}(f;),,i(f,.), so the product off yields that on* WZ(I'), which is seen
to be independent of the choice {of, f]’.}.

Let 1 = Qier, WZ(D;) @ Qjer_ WZ(D/].). @, is a section of the line bundI&* and
satisfies

D1(f'g) = P1(f) * P1(g)
for f', ¢’ € Qic1. DiG ® ®ic;_D;G. Since the section WZ) of r* WZ(I) was defined
by the duality;(WZ(X), ®1) = WZ(5%), we have
(WZ(2)(fg), @1(f'g)) =WZ(SH(fg Vv f'g) = WZ(SH(f v /) * WZ(SH) (g V &)
= (WZ(Z)(f), P1(f) * (WZ(2)(g), P1(g"))
= (WZ(Z)(f) * WZ(2)(g), P1(f'g))

forany f ¢ € XG and for f” andg’ that are extensions gof andg to Ujc;_ D) U Ujey, D,
respectively. Therefore we have

WZ(Z)(fg) = WZ(2)(f) * WZ(Z)(g)
for f,g € XG.
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Let X = Xy Ur X». The product operations dn;)* WZ(I;), i = 1, 2, are compatible
with the contraction, in particular we have

(WZ(E1)(f1) ¥ WZ(E1)(g1), WZ(Z2)(f2) % WZ(E2)(g2))
— WZ(D)(f) * WZ(2)(g), (4.15)

wheref, g € XG andf; = f|X1,i = 1, 2, etc. For a generd € M, the formula follows
from (4.15) and the definition of WZX) in (4.13) Thus we have proven the following
generalization of the Polyakov—Wiegmann formula.

Theorem 4.1.
WZ(2)(f) * WZ(X)(g) = WZ(X)(fg) (4.16)
for f,g € XG.

5. Extensionsof the group 23G

It is a well-known observation that the two-dimensional WZW action gives a geometric
description of the central extensia of the loop group.G. The associated group cocycle
yields a Lie algebra cocycle for the affine Kac—Moody algebra based @¢&)Li2,6]. The
total space of thé/(1)-principal bundleLG was described as the set of equivalence classes
of pairs(f ¢) € D2G x U(1), whereD? is the two-dimensional disc with boundasy.

The equivalence relation was defined on the basis of Polyakov—Wiegmann f@irallas
it was so in our four-dimensional generalization treate8éation 3

Associated to the line bundle WZ®) there exists d/(1)-principal bundle ovengG.
However, this bundle has not any natural group structure contrary to the case of the extension
of loop group. Instead, MickelssdhO] gave an extension d’r?gG by the Abelian group
Map(As, U(1)), whereAs is the space of connections 6. In the following, we shall
explain afterf9] two extensions onSG by the Abelian group Map4s, U(1)) that are in
duality.

5.1. Mickelsson’s 2-cocycle

We consider the quotient space
2G = D'G x Map(As, U(1))/ ~' , (5.1)
where~' is the equivalence relation defined by
(f' s~ (¢, ifandonlyif fs°=g/|s>,
w(A) = 1A Y (f, ¢g) forany A € As. (5.2)

The projectiont : 2G — 23G is defined byr([f', A]) = f'|S%. Then2G becomes a
principal bundle overng with the structure group Mapls, U(1)). Here thelU(1) valued
transition functiony’( f/, g’) is considered as a constant function in Ndp, U(1)).
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The group structure @G is given by the Mickelsson’s 2-cocyc{8.9)on D’:
yo (s f'.g) for f'.g e D'G.

We note that since it is the coboundary of

i
— A; 1),

yp is in fact a cocycle. We define the product DG x Map(As, U(1)) by
(f 0w = (f'g xOup () exp2riyp (A; £, 8H), (5.3)

where
(A = w((f1SH A3 + (f1537Ld(f15%)).

ThenD'G x Map(As, U(1)) is endowed with a group structure amG inherits it. The
group Mag A3, U(1)) is embedded as a normal subgrourﬁﬁ. Thus£2G is an extension
of 223G by the Abelian group Mapds, U(1)) [9,10].

We have another extension .@@G by Map(As, U(1)) if we consider

2'G = DG x Map(As, U(1))/ ~, (5.4)
where the equivalence relationis defined by

(f 1)~ (g w ifandonlyif f]5s°=g|s,

uw(A) = A(A)x(f, g) forany A € Az. (5.5)

The product on2'G is defined by the same way as above using the 2-cogygld; f, g)
of (3.9), and$2'G becomes an extension Q%G by the Abelian group Map4s, U(1)).

The group MagpAs, U(1)) acts onC by A - ¢ = A(0)c. Then the associated line bundle
to 2G is WZ(53) and that associated 10'G is WZ((S3)).

Remark 5.1. Consider the empty three manifofland look it as the boundary .
Then we may follow the above definition to have an extensiop@by Map(As, U(1)).
It becomeshG = S*G x Map(As, U(1))/ ~, where

(F,2) ~ (G, n) ifandonlyif w(A) = exp2riw(F, F~1G)}r(A) for any A.

Then, since(F, ») ~ (F, »(0)), it reduces tgpG = S*G x U(1)/ ~, that is,¢G ~ U(1).
The product ilpG may be defined by the same formula a¢5(8), but we have seen that
it reduces to that of3.16)because of the equalifys(A; F, G) = ¥(F, G), (3.10)

The duality between two extensiofG and2'G is given as follows. Forf’, A] € QG
and [f, o] € §2'G, we put

({[f AL [fed) =1f v 20, (5.6)
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where on the right-hand side we used the produaﬁ(\m ~ U(1). In fact, suppose that
(f',2) ~ (¢, w) and(f @) ~ (g, B). Then we have

1(A)B(A) = A(A)a(A) exp2ri[yp (A; f', &) + vp(A; £ 91}
=A(A)a(A) expl2riy(f Vv f gV &)} (5.7)
Here we used the relatiqB.11)

The Lie algebra cocycle corresponding to the group cocyglés calculated irf10]. It
is given by

i
c(A; X, Y) = 1272 /Dtr dA(dX dY + dY dX)
i
=1 /S3 tr(A(dXx dY + dY dX)). (5.8)
The Lie algebra cocycle corresponding to the group cocyglés given by
i
1272 /D, trdA(dX dY 4+ dY dX)
i
= —@fss tr(A(dX dY + dY dX)) = —c(A: X, Y). (5.9)

5.2. Remarks

1. The Euclidean action of a field: ¥ — G in WZW conformal field theory is defined
as

ik
$20) = ~ oy /X tr(de™! A ) + C(9), (5.10)

Sx(¢) is invariant under a conformal change of metric and the second@grm) is
required to obtain a conformal invariance of the action. This was shown by{5Jugind
first noticed by Witter{18] for the two-dimensional WZW model. The kinetic term in
(5.11)is linear with respect to the multiplication of the fields

/ tr(d(fg)~* A xd(fg)) = / tr(df=1 A xdf) +/ tr(dg™! A xdg), (5.11)
P ) X

and does not affect the Polyakov—Wiegmann formula. Hence we preferred only to deal
with the topological ternC s (f) [3].

2. The argument in this paper will be valid also far-&mensional conformally flat man-
ifolds with boundary if the Lie grous = SU(N) is such thatv > »n + 1, in this case
we havery, (G) = 0 andm2,11(G) = Z. We shall also have the Abelian extensions of
QS”‘lG by Map(A2,—1, U(1)). Forthat purpose we must have the Polyakov—Wiegmann
formula for the action functional

i

/D " tr(z tdg)?*t, g e $%G,
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seg[5]. It seems that Polyakov—Wiegmann formula has not yet been proved for general
n larger than 3.

3. Losev et al[8] discussed a four-dimensional WZW theory based on Kahler manifolds.
Their Lagrangian is defined by

_1 / w Atr(gtog A xg™1ag) + i w Atr(g~tdg)3.
dr Jx 127 Jxx0.1)
The theory has the finiteness properties for the one-loop renormalization of the vacuum
state. The authors studied the algebraic sector of their theory. The category of algebraic
manifolds is not well behaved under contraction, hence their theory does not fit our
axiomatic description.

4. $%is obtained by patching together two quaternion spaces and we have the conjugation
g — g~ Yonit. Under the conjugation WZ&*) is invariant but WZ D) and WZ D’) will
interchange. Since the conjugation inverts the orientation( Xy s invariant under the
conjugation ofX. We can convince ourselves of this fact if we follow the argument to
define WZ X)) for a ¥ € Mg. This is the CPT invariance.
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