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Abstract

We shall give an axiomatic construction of Wess–Zumino–Witten (WZW) actions valued inG =
SU(N),N ≥ 3. It is realized as a functor WZ from the category of conformally flat four-dimensional
manifolds to the category of line bundles with connection that satisfies, besides the axioms of a
topological field theory, the axioms which abstract the characteristics of WZW actions. To each
conformally flat four-dimensional manifoldΣ with boundaryΓ = ∂Σ, a line bundleL = WZ(Γ)
with connection over the spaceΓG of mappings fromΓ to G is associated. The WZW action is
a non-vanishing horizontal section WZ(Σ) of the pullback bundler∗L overΣG by the boundary
restrictionr : ΣG→ ΓG. WZ(Σ) is required to satisfy a generalized Polyakov–Wiegmann formula
with respect to the pointwise multiplication of the fieldsΣG. Associated to the WZW action there
is a geometric description of the extension of the Lie groupΩ3G due to Mickelsson. In fact, we
have two Abelian extensions ofΩ3G that are in duality.
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1. Introduction

In this paper we shall give an axiomatic construction of the Wess–Zumino–Witten (WZW)
action. Axiomatic approaches to field theories were introduced by Segal in two-dimensional
conformal field theory (CFT), and by Atiyah[1,14] in topological field theory. The axioms
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abstract the functorial structure that the path integral would create if it existed as a mathe-
matical object. Thus a CFT is defined as a Hilbert space representation of the operation of
disjoint union and contraction on a category of manifolds with parameterized boundaries.
The functional integral formalism was also explored by Gawedzki[6] to explain the WZW
CFT. Singer[16] proposed a four-dimensional CFT in the language of Penrose’s twistor
space, where Riemann surfaces of two-dimensional CFT were replaced by conformally flat
four-dimensional manifolds.

In a four-dimensional WZW model the space of field configurations is the space of all
maps from closed four-dimensional manifolds with or without boundary into a compact Lie
group. We know from the discussions in[16,19]that the geometric setting for CFT is most
naturally given by the category of conformally flat manifolds. So we adopt this category
of manifolds also for our WZW model. LetΣ be a conformally flat four-dimensional
manifold with boundaryΓ = ∂Σ which may be the empty set. LetG = SU(N) with
N ≥ 3. The amplitude of the WZW model is given formally by the functional integration
over fieldsf ∈ ΣG = Map(Σ,G) with the boundary restriction equal to the prescribed
g ∈ ΓG = Map(Γ,G)

AΣ(g) =
∫
f∈ΣG;f |Γ=g

exp{2πiSΣ(f )}Df, (1.1)

whereSΣ(f) is defined by

SΣ(f) = − ik

12π2

∫
Σ

tr(df−1 ∧ ∗df )+ CΣ(f ).

Since we deal with contributions that are topological in nature we omit the first term (kinetic
term). The exponential of the second term

WZ(Σ)(f ) = exp{2πiCΣ(f )} (1.2)

is called the WZW action. (In[6,7] it is called an amplitude or a probability amplitude. In
[3] it is called the WZW action.) WhenΣ has no boundaryCΣ(f) is defined by

CΣ(f ) = i

240π3

∫
B5

tr(df̃ · f̃−1)5, (1.3)

wheref̃ is an extension off to a five-dimensional manifoldB5 with boundary∂B5 = Σ.
SinceΣ is a compact conformally flat manifold it is the boundary of a five-dimensional
manifoldB5. But it is not clear that we can take such a smooth extension off overB5. If
Σ is simply connected it is conformally equivalent to a four-dimensional sphere, and then,
sinceπ4(G) = 1, there exists a smooth extension off to the five-dimensional discD5 and
CS4(f) is defined up toZ, that is, exp{2πiCS4(f)} is well defined. The problem arises as to
how to define the action WZ(Σ)(f) for generalΣ without boundary. On the other hand, in
(1.1) we are dealing with a four-manifold with boundary, so we must also give the definition
of the action WZ(Σ)(f) for Σ with non-empty boundary. The above discussions lead to the
following conclusion:A four-dimensional WZW model means to assign a proper definition
of the actionWZ(Σ)(f) to every compact conformally flat four-manifoldΣ with or without
boundary.
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We shall construct the actions WZ(Σ) as the objects that satisfy several axioms. Our
WZW actions are associated to four-dimensional manifolds with boundary and respect the
functorial properties of various operations on the basic manifolds. Hence we impose on
WZ(Σ) several axioms that are similar to those of topological field theories. Axioms of
topological field theories were introduced by Atiyah[1]. They apply to a functor from the
category of topological spaces to the category of vector spaces. Gawedzki[6] explored in
the same spirit the axioms which characterize the amplitudes of two-dimensional WZW
theory. Since our objects are not the amplitudes but the actions of the field, we describe
our four-dimensional WZW theory as a functor WZ from the category of four-manifolds
with boundary to the category ofcomplex line bundles. This functor is required to satisfy
the involutory axiom, the multiplicativity axiom and the associativity axiom that represent
respectively the orientation reversal and the operations of disjoint union and contraction of
the basic manifolds. Next we shall introduce two axioms that are characteristic of WZW
models. We know that the action functional in field theory has topological effects, that is,
it gives rise to the holonomy of a connection. So we require as our next axiom that the
action WZ(Σ) gives rise to a four-dimensional analog of parallel transport associated to
a connection of the complex line bundle. Higher-dimensional parallel transports as well
as holonomies were discussed by Terashima[17], following the idea of Gawedzki[7] that
relates isomorphism classes of line bundles with connection and theU(1)-holonomy coming
from WZW action. The fundamental property of the WZW action is its behavior under the
pointwise multiplication of fields. It is expressed by the Polyakov–Wiegmann formula[12],
and its generalization to four-dimensional sphere was given by Mickelsson[10]. As our last
axiom we demand that WZ(Σ) satisfies the generalized Polyakov–Wiegmann formula over
ΣG. More precisely, the WZW actions can be stated as follows. A four-dimensional WZW
model means a functor WZ that assigns to each manifoldΣ, and its boundaryΓ = ∂Σ, a
line bundleL = WZ(Γ) over the space of mapsΓG, and a non-vanishing section WZ(Σ)

overΣG of the pullback line bundler∗L by the boundary restriction mapr : ΣG→ ΓG.
The functor WZ satisfies the axioms of topological field theories. We demand that each
line bundle WZ(Γ) has a connection and that WZ(Σ) is parallel with respect to the induced
connection onr∗L. We impose moreover that onr∗L there is defined a product which is
equivariant with respect to the product onΣG through the Polyakov–Wiegmann formula

WZ(Σ)( fg) = WZ(Σ)(f ) ∗ WZ(Σ)(g) for f, g ∈ ΣG. (1.4)

We shall see that WZ(Σ) is a positive integer for a compactΣ.
Here is a brief summary of each section. InSection 2, we explain following[16] that

the category of conformally flat manifolds fits most naturally the construction of axiomatic
CFT and our WZW model. InSection 2.2we introduce the axioms of our WZW model.
Gawedzki[6] gave two line bundles in duality over the loop space LG that correspond to the
2-cocycles obtained by transgressing the 3-curvature onG. In the same spirit we shall give
in Section 3two line bundles WZ(S3) and WZ((S3)′) in duality overΩ3

0G that correspond
to the 2-cocycles obtained by transgressing the 5-form overG. HereΩ3

0G is the space of
smooth maps fromS3 to G that have degree 0. In fact, we have a 2-form onΩ3

0G

β = i

240π3

∫
S3

tr(df · f−1)5, (1.5)
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which generates the integral cohomology classH2(Ω3
0G,Z). Hence it defines a line bundle

with connection onΩ3
0G with the curvatureβ. This is WZ(S3). Let DG be the space of

maps from a hemisphereD toG and letD′G be the space of maps for the other hemisphere.
We shall give a non-vanishing section WZ(D) of the pullback line bundle of WZ(S3) by
the boundary restriction mapr : DG → Ω3

0G. Intuitively WZ(D)(f) is the holonomy
associated to the curvatureβ over the four-dimensional pathf ∈ DG. Similarly, we have
a non-vanishing section WZ(D′) of the pullback line bundle of WZ((S3)′) by r′ : D′G→
Ω3

0G. The connections on WZ(S3) and WZ((S3)′) are given inSection 3.8, with respect
to which WZ(D) and WZ(D′) are parallel, respectively. InSection 4we construct the
functor WZ. The line bundle WZ(Γ) is defined as the tensor product of WZ(Γi) for each
boundary componentΓi parameterized byS3, while each WZ(Γi) is defined as the pullback
of WZ(S3) or WZ((S3)′) by the mapΓiG → S3G coming from the parameterization.
The non-vanishing section WZ(Σ) of r∗WZ(Γ) is defined from the non-vanishing sections
WZ(D) and WZ(D′) by cutting and pasting methods and by using the dual relations, i.e.
the associativity axiom. The connection on WZ(Γ) is induced from those on WZ(S3) and
WZ((S3)′) by a standard procedure. WZ satisfies the axioms that abstract the functorial
structure of the WZW actions. In particular, we have the Polyakov–Wiegmann formula
generalized toΣG for any conformally flat four-manifoldΣ. In Section 5we shall discuss
extensions of the Lie groupΩ3

0G. It is a well known observation that the two-dimensional
WZW action gives a geometric description of central extensions of the loop group[2,6]. The
U(1)-principal bundle overΩ3

0G associated to the line bundle WZ(S3), however, does not
have any group structure. Instead Mickelsson[10] gave an extension ofΩ3

0G by the Abelian
group Map(A3, U(1)), whereA3 is the space of connections onS3. We shall explain two
extensions of Mickelsson’s type that are dual to each other.

2. Axioms for a four-dimensional WZW model

2.1. Category of conformally flat manifolds

The basic components of four-dimensional CFT are some well behaved class of four-
dimensional manifoldsM with parameterized boundaries, together with the natural opera-
tions of disjoint union

(M1,M2)→ M1 ∪M2,

and contraction

M → M̃,

whereM̃ is obtained fromM using the parameterization to attach a pair of boundary
three-spheres to each other. A four-dimensional CFT is then defined as a Hilbert space rep-
resentation of the operation of disjoint union and contraction on these basic components.
Now we know that the geometric setting for this CFT is most naturally given by the con-
formal equivalence classes of conformally flat four-dimensional manifolds. This fact was
explained by Singer[16], Zucchini[19] and Mickelsson and Scott[11].
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Here we shall see following[16] the fact that the class of compact conformally flat
four-dimensional manifolds with boundary is closed under the operation of sewing mani-
folds together across a boundary component. For any conformally flatM the developing map
M → S4 is a well-defined conformal local diffeomorphism. A closed 3-manifoldN ⊂ M

is called aroundS3 in M if it goes over diffeomorphically to a roundS3 in S4 under de-
velopment. This is well defined because the developing map is unique up to composition
with conformal transformations. For standardM, the boundary∂M consists of a disjoint
union of roundS3s [13]. For each boundary componentB one can find a neighborhood of
B in M and a conformal diffeomorphism of this neighborhood onto a neighborhood of the
equator in the northern hemisphere ofS4. If we have two boundary componentsB andB̃ of
M and an orientation reversing conformal diffeomorphismψ : B→ B̃, thenB andB̃ can
be attached usingψ and the resulting manifold will have a unique conformally flat structure
compatible with the original one onM.

2.2. Four-dimensional WZW model

Now we give the precise definition of a four-dimensional WZW model.
Let M4 be the conformal equivalence classes of all compact conformally flat four-

dimensional manifoldsM with boundary∂M = ∪i∈IΓi such that each oriented component
Γi is a roundS3, and is endowed with a parameterizationpi : S3 → Γi. We distinguish
positive and negative parameterizationspi : S3 → Γi, i ∈ I±, depending on whetherpi

respects the orientation ofΓi or not.
Let M be the category whose objects are three-dimensional manifoldsΓ which are

disjoint unions of roundS3’s. A morphism between three-dimensional manifoldsΓ1 and
Γ2 is an oriented cobordism given byΣ ∈M4 with boundary∂Σ = Γ2 ∪ (Γ ′1), where the
prime indicates the opposite orientation.

LetL be the category of complex line bundles.
Let G = SU(N),N ≥ 3. In the following, the set of smooth mappings from a manifold

M toG that are based at some pointp0 ∈ M is denoted byMG= Map(M,G). MGbecomes
a group under product of mappings. For aΣ ∈M4 with boundaryΓ = ∂Σ, r denotes the
restriction map

r : ΣG→ ΓG, r(f) = f |Γ. (2.1)

A four-dimensional WZW model means a functor WZ from the categoryM to the category
L which assigns:

(WZ1) to each manifoldΓ ∈M, a complex line bundle WZ(Γ) over the spaceΓG;
(WZ2) to eachΣ ∈M4, with ∂Σ = Γ , a non-vanishing section WZ(Σ) of the pullback line

bundler∗WZ(Γ).

Recall that the pullback bundle is by definition

r∗WZ(Γ) = {(f, u) ∈ ΣG×WZ(Γ ), πu = r(f )}, (2.2)

and the section WZ(Σ) is given atf ∈ ΣG by

WZ(Σ)(f) = (f, u) with u ∈ π−1(r(f )) = WZ(Γ )r(f).
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WZ being a functor fromM to L, a conformal diffeomorphismα : Γ1 → Γ2 induces
an isomorphism WZ(α) : WZ(Γ1) → WZ(Γ2) such that WZ(βα) = WZ(β)WZ(α) for
β : Γ2 → Γ3. Also if α extends to a conformal diffeomorphismΣ1 → Σ2, with ∂Σi = Γi,
i = 1,2, then WZ(α) takes WZ(Σ1) to WZ(Σ2).

The functor WZ satisfies the following axioms. A1–A3 represent in the category of line
bundles the orientation reversal and the operation of disjoint union and contraction. These
axioms are stated in the same manner as in topological field theories[1]. Axioms A4 and
A5 are characteristic of the WZW model:

(A1) Involution:

WZ(Γ ′) = WZ(Γ)∗, (2.3)

where∗ indicates the dual line bundle.
(A2) Multiplicativity:

WZ(Γ1 ∪ Γ2) = WZ(Γ1)⊗WZ(Γ2). (2.4)

(A3) Associativity: For a composite cobordismΣ = Σ1∪Γ3 Σ2 such that∂Σ1 = Γ1∪ Γ3
and∂Σ2 = Γ2 ∪ Γ ′3, we have

WZ(Σ)(f) = 〈WZ(Σ1)(f1),WZ(Σ2)(f2)〉 (2.5)

for anyf ∈ ΣG, fi = f |Σi, i = 1,2, where〈·, ·〉 denotes the natural pairing

WZ(Γ1)⊗WZ(Γ3)⊗WZ(Γ ′3)⊗WZ(Γ2)→ WZ(Γ1)⊗WZ(Γ2). (2.6)

More precisely, let WZ(Σ1)(f1) = (f1, u1 ⊗ v) and WZ(Σ2)(f2) = (f2, u2 ⊗ v′) with
ui ∈ WZ(Γi) for i = 1,2, andv ∈ WZ(Γ3), v′ ∈ WZ(Γ ′3). From the definitionui ∈
π−1(fi|Γi), v ∈ π−1(f1|Γ3) andv′ ∈ π−1(f2|Γ ′3). On the other hand, let WZ(Σ)(f) =
(f,w1⊗w2) ∈ WZ(Γ1)⊗WZ(Γ2) with wi ∈ π−1(f |Γi) for i = 1,2. Then axiom A3 says
thatw1⊗w2 = 〈v′, v〉u1⊗u2. The multiplicative axiom A2 asserts that if∂Σ = Γ2∪ (Γ ′1),
then WZ(Σ) is a section of

r∗1 WZ(Γ ′1)⊗ r∗2 WZ(Γ2) = Hom(r∗1 WZ(Γ1), r
∗
2 WZ(Γ2)). (2.7)

Therefore any cobordismΣ betweenΓ1 andΓ2 induces a homomorphism of sections of
pullback line bundles

WZ(Σ) : C∞(Σ, r∗1 WZ(Γ1))→ C∞(Σ, r∗2 WZ(Γ2)). (2.8)

We impose:

1. WZ(φ) = C forφ the empty three-dimensional manifold, (2.9)
2. WZ(S4) = 1, (2.10)
3. WZ(Γ × [0,1]) = Id(WZ(Γ)→ WZ(Γ)). (2.11)

Corollary 2.1. If Σ has no boundary(∂Σ = φ), thenWZ(Σ) ∈ C.

The following axioms are characteristic of WZW models:
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(A4) For eachΣ ∈M4 with Γ = ∂Σ, WZ(Γ) has a connection, and WZ(Σ) is parallel
with respect to the induced connection onr∗WZ(Γ ).

(A5) Generalized Polyakov–Wiegmann formula: For eachΣ ∈M4 with Γ = ∂Σ, on the
pullback line bundler∗WZ(Γ) is defined a product∗ with respect to which we have

WZ(Σ)(fg) = WZ(Σ)(f ) ∗ WZ(Σ)(g) for any f, g ∈ ΣG. (2.12)

The well-known Polyakov–Wiegmann formula extended by Mickelsson[10] is concerned
with the case of the four-dimensional sphere,Σ = S4.

From now on we shall construct the functor WZ step by step. InSection 3.5we shall
construct two line bundles overS3G, which are WZ(S3) and WZ((S3)′). In Section 4we
give the functor WZ of WZW actions step by step starting from WZ(S3) and WZ((S3)′).

3. Line bundles on Ω3G

3.1. Ω3G

In the following, we denote byΩ3G, instead ofS3G, the set of smooth mappingsf
from anS3 to G = SU(N) that are based, i.e.,f(po) = 1, at some pointpo ∈ S3. It is
known thatΩ3G is not connected and is divided into denumerable sectors labeled by the
soliton number (the mapping degree). Here we follow the explanation due to Singer[15]
of these facts, see also[4,9]. Let the evaluation map, ev :S3 × Ω3G → G, be defined
by ev(m, ϕ) = ϕ(m),m ∈ S3, ϕ ∈ Ω3G. The Maurer–Cartan formg−1 dg on G gives
the identification of the tangent spaceTeG at e ∈ G and LieG = su(N). The primitive
generators of the cohomologyH∗(G,R) are given by

ω3 = − 1

4π2
tr(g−1 dg)3, ω5 = − i

2π2
tr(g−1 dg)5, . . . . (3.1)

Integration onS3 of the pullback ofω2k−1 by the evaluation map ev gives us the following
2(k − 2) form onΩ3G:

ν2k−1 =
(

1

2πi

)k
((k − 1)!)2

(2k − 1)!

∫
S3

tr(dϕ ϕ−1)2k−1, 3≤ 2k − 1≤ 2N − 1. (3.2)

In particular,ν3 is the mapping degree ofϕ

degϕ = i

24π2

∫
S3

tr(dϕ ϕ−1)3. (3.3)

Proposition 3.1.

1. S3 LieG
exp→Ω3G

deg→Z → 0 is exact.
2. degϕ1 · ϕ2 = degϕ1+ degϕ2,

see[4,9].
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3.2. 2-cocycle onS4G

LetPG be aG-principal bundle overS4. LetA be the space of connections onPG that are
LieG-valued 1-forms onPG. Let G = S4G be the group of based gauge transformations.
The action ofG onA is given byAg = g−1Ag+g−1 dg for A ∈ A andg ∈ G.F = F(A) =
dA+ A2 denotes the curvature 2-form ofA.

The Chern–Simons form onPG is

ω0
5(A) = tr(AF2− 1

2A
3F + 1

10A
5). (3.4)

We have then tr(F3) = dω0
5(A).

From Zumino[20] we know the relation

ω0
5(Ag)− ω0

5(A) = dα4(A; g)+ 1
10 tr(dg · g−1)5

with

α4(A; g) = tr[−1
2V(AF+ FA− A3)+ 1

4(VA)2+ 1
2V

3A], (3.5)

whereV = dg · g−1.
Let D5 be a five-dimensional disc with boundary∂D5 = S4. Integration overD5 gives

us thegauge anomaly

Γ(A, g) = i

48π3

∫
S4

tr[−V(AF+ FA− A3)+ 1
2(VA)2+ V 3A] + C5(g),

C5(g) = i

240π3

∫
D5

tr(dg · g−1)5, (3.6)

hereg ∈ S4G is extended toD5G, in fact, we have such an extension by virtue ofπ4(G) = 1.
C5(g)may depend on the extension but it can be shown that the difference of two extensions
is an integer, and exp(2πiC5(g)) is independent of the extension.

We put, forf, g ∈ S4G,

γ(f, g)= i

24π3

∫
S4

α4(f
−1 df, g) = i

48π3

∫
S4

tr[(dg g−1)(f−1 df )3

+ 1

2
(dg g−1f−1 df )2+ (dg g−1)3(f−1 df )]. (3.7)

and

ω(f, g) = Γ(f−1 df, g) = γ(f, g)+ C5(g). (3.8)

Remark 3.1. Here we shall look at Mickelson’s 2-cocycle for his Abelian extension ofΩ3G

[10]. The cochainα4 in (3.5) is a one-cochain on the groupS4G, valued in Map(A4, R).
The coboundaryδα4 is given by

δα4(A : g1, g2) = dβ + α4(g
−1
1 dg1; g2),

β(A; g1, g2)=−tr[ 1
2(dg2 g

−1
2 )(g−1

1 dg1)(g
−1
1 Ag1)

− 1
2(dg2 g

−1
2 )(g−1

1 Ag1)(g
−1
1 dg1)].
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Mickelson’s 2-cocycleγ∆(A; f, g) is defined as the integration ofδα4(A; g1, g2) over any
region∆ ⊂ S4

γ∆(A; f, g) = i

24π3

∫
∆

δα4(A; f, g). (3.9)

But for ∆ = S4, it is independent ofA and

γS4(A; f, g) =
∫
S4

δα4(A; f, g) =
∫
S4

α4(f
−1 df, g) = γ(f, g) (3.10)

for f, g ∈ S4G. Hence, instead ofγS4(A; f, g), we use more simpleγ(f, g) for our purpose.

Remark 3.2. We have

γ(F,G) = γD(A;F,G)+ γD′(A;F,G) (3.11)

for anyA ∈ A4. HereD is an oriented hemisphere ofS4 andD′ is the other hemisphere:
D ∪D′ = S4.

Lemma 3.1 (Polyakov–Wiegmann).For f, g ∈ S4G we have

C5( fg) = C5(f )+ C5(g)+ γ(f, g) mod Z. (3.12)

The following formula was proved by Mickelsson[10, Lemma 4.3.7]:

C5(fg) = C5(f )+ C5(g)+ γS4(A; f, g) mod Z.

SinceγS4(A; f, g) = γ(f, g) from (3.10)we have the proposition.

3.3. Line bundle WZ(φ)

Now we are prepared to define the line bundle WZ(φ) over Map(∂S4,G) = φ, and
the section WZ(S4) of the pullback line bundle of WZ(φ) by the empty restriction map
r : S4G→ φ.

Let Lφ be the quotient ofS4G× C by the equivalence relation

(f, c) ∼ (g, c exp{2πiω(f, f−1g)}). (3.13)

ThenLφ is a line bundle over Map(∂S4,G) = φ with the transition function exp{2πiω
(f, f−1g)}, which we shall define as WZ(φ). Recall thatS4G is contractible. We have then

WZ(φ) � C. (3.14)

The isomorphism is given by

[f, c] → c exp{−2πiC5(f )}.
It is well defined because of the Polyakov–Wiegmann formula. Letr∗WZ(φ)be the pullback
line bundle of WZ(φ) by the empty restriction mapr : S4G→ φ. The section WZ(S4) of
r∗WZ(φ) over anyf ∈ S4G is given by

WZ(S4)(f ) = [f,exp{2πiC5(f )}] ∈ WZ(φ). (3.15)
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By the isomorphism of(3.14)we can also write

WZ(S4) = 1 ∈ C.

We can define the product on the line bundle WZ(φ) � C in an obvious way, but we shall
look this product more precisely, rather superfluously, for the sake of later sections. In
S4G× C we define the product by putting

(f, a) ∗ (g, b) = (fg,abexp{2πiγ(f, g)}). (3.16)

Since the equivalence relation(3.13) respects the product, it gives a product on the line
bundle WZ(φ). The Polyakov–Wiegmann formula(3.12)is stated as follows:

WZ(S4)( fg) = WZ(S4)(f ) ∗ WZ(S4)(g) for f, g ∈ S4G. (3.17)

3.4. Notations and definitions

In this section, we shall prepare some notations, definitions and elementary properties
that will be used in the following sections.

LetΩ3G be as before the set of smooth mappings fromS3 toG = SU(N) that are based.
Ω3G is not connected but divided into the connected components by deg. We put

Ω3
0G = {g ∈ Ω3G;degg = 0}. (3.18)

The oriented four-dimensional disc with boundaryS3 is denoted byD, while that with
opposite orientation is denoted byD′. The composite cobordism ofD andD′ becomesS4.
We write as beforeDG= Map(D,G) andD′G = Map(D′,G). The restriction toS3 of an
f ∈ DG has degree 0;f |S3 ∈ Ω3

0G.
For ana ∈ Ω3

0G we denote byDa the set of thoseg ∈ DG that is a smooth extension
of a, respectively,D′a is the set of thoseg′ ∈ D′G that is a smooth extension ofa. For
f ∈ Da andg ∈ Db one hasfg ∈ D(ab), and every element ofD(ab) is of this form.
Similarly forD′(ab). We denote byg∨ g′ ∈ S4G the map obtained by sewingg ∈ DG and
g′ ∈ D′(g|S3).

The prime will indicate that the function expressed by the letter is defined onD′, for
example, 1′ is the constant functionD′ � x → 1′(x) = e ∈ G, while 1 is the constant
functionD � x→ 1(x) = e ∈ G. We write

D′f = {f ′ ∈ D′G : f ′|S3 = f |S3}, Df ′ = {f ∈ DG : f |S3 = f ′|S3}.
Let f, g ∈ DG andf |S3 = g|S3. From(3.7) and (3.8)we see thatγ(f ∨ f ′, f−1g ∨ 1′)

andω(f ∨ f ′, f−1g ∨ 1′) are independent off ′ ∈ Df

γ(f ∨ f ′, f−1g ∨ 1′)

= i

48π3

∫
D

tr

[
(dg g−1)(f−1 df)3+ 1

2
(dg g−1f−1 df)2+(dg g−1)3(f−1 df )

]
.

(3.19)

Similarly, for f ′, g′ ∈ D′G such thatf ′|S3 = g′|S3. γ(g ∨ g′,1∨ (g′)−1f ′) andω(g ∨
g′,1 ∨ (g′)−1f ′) are independent ofg ∈ Dg′. Hence exp{2πiω(f ∨ ·, f−1g ∨ 1′)} and
exp{2πiω(· ∨ f ′,1∨ (f ′)−1g′)} are constants ofU(1).
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Definition 3.1.

1. We put, forf, g ∈ DG such thatf |S3 = g|S3,

χ(f, g) = exp{2πiω(f ∨ ·, f−1g ∨ 1′)}. (3.20)

2. We put, forf ′, g′ ∈ D′G such thatf ′|S3 = g′|S3,

χ′(f ′, g′) = exp{2πiω(· ∨ f ′,1∨ (f ′)−1g′)}. (3.21)

Lemma 3.2.

1. For f, g ∈ DG such thatf |S3 = g|S3, we haveχ(f, g) ∈ U(1) and

exp{2πiC5(g ∨ f ′)} = exp{2πiC5(f ∨ f ′)}χ(f, g) for any f ′ ∈ D′f. (3.22)

2. For f ′, g′ ∈ D′G such thatf ′|S3 = g′|S3, we haveχ′(f ′, g′) ∈ U(1) and

exp{2πiC5(f ∨ g′)} = exp{2πiC5(f ∨ f ′)}χ′(f ′, g′) for any f ∈ Df ′. (3.23)

The lemma follows from the Polyakov–Wiegmann formula.

3.5. Line bundles WZ(S3) and WZ((S3)′)

Now we shall give two line bundles onΩ3
0G that are dual to each other. We shall follow

the arguments due to Gawedzki[6] that were developed to construct two line bundles in
duality over the loop groupLG and to give the definition of WZW action on a hemisphere.

We consider the following quotient:

L = D′G× C/ ∼′ , (3.24)

where∼′ is the equivalence relation defined by

(f ′, c′) ∼′ (g′, d′) if and only if f ′|S3 = g′|S3, d′ = c′χ′(f ′, g′). (3.25)

The equivalence class of(f ′, c′) is denoted by [f ′, c′]. We define the projection

π : L→ Ω3
0G

by π([f ′, c′]) = f ′|S3. L becomes a line bundle onΩ3
0G with the transition function

χ′(f ′, g′).
More precisely, leta ∈ Ω3

0G and takef ′ ∈ D′a. A coordinate neighborhood ofa is given
by

Uf ′ = {g′|S3; g′ ∈ Vf ′ },
Vf ′ = {g′ ∈ D′G, g′ = expX · f ′;X ∈ D′(LieG), ‖X‖ < δ}.

The local trivialization ofL is given by the mapπ−1(Uf ′) � [h′, c′] → (h′|S3, c′)

π−1(Uf ′) � Uf ′ × C.
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The transition functionχUf ′ ,Ug′ (b) of L at b ∈ Uf ′ ∩ Ug′ becomes as follows. Letb ∈
Uf ′ ∩ Ug′ . Let h′ ∈ Vf ′ andk′ ∈ Vg′ be such thath′|S3 = k′|S3 = b. For ξ = [h′, c′] =
[k′, d′] ∈ π−1(b) we have obviouslyd′ = χ′(h′, k′)c′. Hence

χUf ′ ,Ug′ (b) = χ′(h′, k′). (3.26)

The line bundleL is what we wanted to construct and will be denoted by WZ(S3).
In regard to the involution axiom A1 which WZ(·) is required to satisfy we must define

another line bundle onΩ3
0G corresponding toS3 with opposite orientation. This line bundle

WZ((S3)′) is defined by

WZ((S3)′) = DG× C/ ∼ (3.27)

with the equivalence relation

(f, c) ∼ (g, d) if and only if f |S3 = g|S3, d = cχ(f, g). (3.28)

The projectionπ : WZ((S3)′)→ Ω3
0G is given by [f, c] → f |S3. It is a line bundle with

the transition functionχ(f, g).
WZ(S3) and WZ((S3)′) are in duality so that the involution axiom A1 is verified for these

line bundles. In fact, the duality

WZ(S3)×WZ((S3)′)→ C

is defined by

〈[f ′, c′], [f, c]〉 = cc′ exp{−2πiC5(f ∨ f ′)}, (3.29)

wheref |S3 = f ′|S3 ∈ Ω3
0G. If we note the evident fact thatγ(F,1∨h′) (resp.γ(F, h∨1′))

in (3.19)is given by an integration overD′ (resp.D), we see that the product of transition
rules(3.25) and (3.28)imply the transition rule(3.13)of WZ(φ)

χ(f, g)χ′(f ′, g′) = exp{2πiω(f ∨ f ′, f−1g ∨ (f ′)−1g′)}. (3.30)

Hence

WZ(S3)⊗WZ((S3)′) = WZ(φ). (3.31)

Composed with(3.14)this implies the above duality.

3.6. Non-vanishing sections WZ(D) and WZ(D′)

Let r : DG→ S3G andr′ : D′G→ S3G be the restriction maps.
We put forf ∈ DG,

WZ(D)(f ) = [f ′,exp{2πiC5(f ∨ f ′)}] ∈ WZ(S3)|r(f ). (3.32)

Then we see from Lemma 3.2 that WZ(D) gives a non-vanishing section of the pullback
line bundler∗WZ(S3).
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In the same way we put forf ′ ∈ D′G,

WZ(D′)(f ′) = [f,exp{2πiC5(f ∨ f ′)}] ∈ WZ((S3)′)|r′(f ′). (3.33)

WZ(D′) defines a non-vanishing section of(r′)∗WZ((S3)′).

Proposition 3.2. For f ∈ DG andf ′ ∈ D′G such thatf |S3 = f ′|S3

〈WZ(D)(f ),WZ(D′)(f ′)〉 = WZ(S4)(f ∨ f ′). (3.34)

In fact, both sides are equal to exp{2πiC5(f ∨ f ′)}.

3.7. Products inr∗WZ(S3) and(r′)∗WZ((S3)′)

The total space of the pullback bundler∗WZ(S3) is written as

r∗WZ(S3) = {(f, λ); f ∈ DG, λ = [f ′, c′] ∈ WZ(S3)r(f )}.
We define the product inr∗WZ(S3) by the formula

(f, λ) ∗ (g, µ) = (fg, ν), (3.35)

where, forλ = [f ′, a′] ∈ WZ(S3)r(f ) andµ = [g′, b′] ∈ WZ(S3)r(g), ν = [f ′g′, c′] ∈
WZ(S3)r(fg) is defined by

c′ = a′b′ exp{2πiγ(f ∨ f ′, g ∨ g′)}, (3.36)

ν does not depend on the representations ofλ andµ, and the product is well defined.
We have

WZ(D)(fg) = WZ(D)(f ) ∗WZ(D)(g) for f, g ∈ DG. (3.37)

In fact, this follows from the definition:

WZ(D)(f ) = [f ′,exp{2πiC5(f ∨ f ′)}],
and the Polyakov–Wiegmann formula.

Similarly we have the product on(r′)∗WZ((S3)′) overD′G. It is given by

(f ′, α) ∗ (g′, β) = (f ′g′, γ), (3.38)

where forα = [f, a] ∈ WZ((S3)′)r′(f ′) andβ = [g, b] ∈ WZ((S3)′)r′(g′), γ = [fg, c] ∈
WZ((S3)′)r′(f ′g′) is defined by

c = abexp{2πiγ(f ∨ f ′, g ∨ g′)}. (3.39)

We have

WZ(D′)(f ′g′) = WZ(D′)(f ′) ∗ WZ(D′)(g′) for f ′, g′ ∈ D′G. (3.40)

We note that product operations onr∗WZ(S3) and on(r′)∗WZ((S3)′) are compatible with
the duality

r∗WZ(S3)× (r′)∗WZ((S3)′)→ WZ(φ) � C, (3.41)
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that is, for(f, λ), (g, µ) ∈ r∗WZ(S3) and for(f ′, λ′), (g′, µ′) ∈ (r′)∗WZ((S3)′) such that
r(f ) = r′(f ′) andr(g) = r′(g′), we have

〈(f, λ) ∗ (g, µ), (f ′, λ′) ∗ (g′, µ′)〉 = 〈λ, λ′〉 ∗ 〈µ,µ′〉, (3.42)

the right-hand side being the product in WZ(φ) � C.

3.8. Connections onWZ(S3) andWZ((S3)′)

Next we define a connection on WZ(S3). They are described as follows. Letb ∈ Ω3
0G

andUf ′ be a coordinate neighborhood described inSection 3.5. OnUf ′ we put

θUf ′ (b)(X) = i

48π3

∫
D′

tr(h−1 dh)3 dX (3.43)

for h ∈ D′b andX ∈ D′(LieG). We have

θUg′ = θUf ′ + (χUf ′ ,Ug′ )
−1 dχUf ′ ,Ug′ ,

whereχUf ′ ,Ug′ is the transition function of WZ(S3)

χUf ′ ,Ug′ (b) = χ′(h′, k′)

for h′ ∈ D′b ∩ Vf ′ andk′ ∈ D′b ∩ Vg′ . We have a well-defined connectionθ on WZ(S3).
The curvature ofθ becomes

F(X, Y) = − 1

24π3

∫
S3

tr(V 2(X dY − Y dX)), V = df f−1|S3. (3.44)

The calculation for these formula is the same as in[5,9,10].
Similarly we have a connection on WZ((S3)′) represented by a formula parallel to(3.43)

but integrated onD.
On the pullback bundler∗WZ(S3) there is an induced covariant derivative

(r∗�)Xs(f ) = (�r∗Xr∗s)(r(f )),

wherer∗s is the section of WZ(S3) defined byr∗s(b) = s(f ) = [f ′, c′] ∈ WZ(S3)b for an
(and any)f ∈ Db. X is a vector field onD, hencer∗X is a vector field onS3.

Similarly the covariant derivative on WZ((S3)′) is defined.
The sections WZ(D) and WZ(D′) are parallel with respect to the respective covariant

derivation. This follows almost from the definitions by virtue of the infinitesimal form of
the Polyakov–Wiegmann formula:

d

dt

∣∣∣∣
t=0

C5(f etX) = i

48π3

∫
S4

tr(f−1df)3 dX for X ∈ S4(LieG), f ∈ S4G.

(3.45)

Proposition 3.3.

�WZ(D) = 0, (3.46)

�WZ(D′) = 0. (3.47)
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Remark 3.3. We could consider in the following construction of the WZW model those
line bundles WZn(S3) associated to thenth sector ofΩ3G, but for a fixedn. However, in
the sequel we shall restrict our discussion only to the contractible componentΩ3

0G.

4. Construction of WZW actions

4.1. Line bundleWZ(Γ )

LetΣ ∈M4. ThenΣ is a conformally flat manifold with boundary∂Σ = Γ = ∪i∈I+Γi∪
∪i∈I−Γi with Γi a parameterized roundS3 in Σ.

For ani ∈ I− ⊕ I+, the parameterization defines the mappi : S3 → Γi, and the map
pi : ΓiG→ Ω3G, which we denote by the same letter. Then we have the pullback bundle
of WZ(S3) (resp. WZ((S3)′)) by pi. We define

WZ(Γi) = p∗i WZ(S3) for i ∈ I−, WZ(Γi) = p∗i WZ((S3)′) for i ∈ I+, (4.1)

then we have, respectively,

WZ(Γ ′i ) = p∗i WZ((S3)′) for i ∈ I−, WZ(Γ ′i ) = p∗i WZ(S3) for i ∈ I+.
(4.2)

The line bundle WZ(Γ) is defined by

WZ(Γ) = ⊗
i∈I−

WZ(Γi)⊗ ⊗
i∈I+

WZ(Γi). (4.3)

Now letα : S3 → S3 be the restriction onS3 of a conformal diffeomorphism onS4. First we
suppose thatα preserves the orientation. Then, since the transition functionχ is invariant
underα, the line bundle WZ(S3) is invariant underα. If α reverses the orientation then
D is mapped toD′ andχ is changed toχ′. Thenα∗WZ(S3) becomes WZ((S3)′). On the
other hand, the parameterizationspi are uniquely defined up to composition with conformal
diffeomorphisms. Therefore WZ(Γ) is well defined for the conformal equivalence class of
Γ ∈M.

The dual of WZ(Γ) is

WZ(Γ ′) = ⊗
i∈I−

WZ(Γ ′i )⊗ ⊗
i∈I+

WZ(Γ ′i ), (4.4)

and the duality; WZ(Γ)×WZ(Γ ′)→ C, is given from(3.29)by〈
⊗

i∈I−
[f ′i , c

′
i] ⊗ ⊗

i∈I+
[gi, di], ⊗

i∈I−
[fi, ci] ⊗ ⊗

i∈I+
[g′i, d

′
i]

〉

= Πi∈I−cic
′
i ·Πi∈I+did

′
i exp


−2πi

∑
i∈I−

C5(fi ∨ f ′i )− 2πi
∑
i∈I+

C5(gi ∨ g′i)


 .

The above defined WZ(Γ) satisfies axioms A1 and A2.
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4.2. Non-vanishing sectionWZ(Σ)

In the following, we shall define step by step the section WZ(Σ) of r∗WZ(Γ) for any
Σ ∈M4 with the boundary∂Σ = Γ andr : ΣG→ ΓG.

We obtain a compact manifoldΣc ∈M4 without boundary by sewing a copyDi of D
alongΓi for i ∈ I− and a copyD′i of D′ for i ∈ I+

Σc =

⋃

i∈I−
Di


 ⋃
∪I−Γi

Σ
⋃
∪I+Γi


⋃

i∈I+
D′i


 .

For each boundary componentΓi of Γ the parameterizationpi is extended to a parameter-
ization p̃i : Di → D if i ∈ I−, andp̃i : Di → D′ if i ∈ I+. The extension is unique up to
composition with conformal transformations, seeSection 2.1.

We put

WZ(Di) = (p̃i)
∗WZ(D), (4.5)

WZ(D′i) = (p̃i)
∗WZ(D′). (4.6)

For i ∈ I−, WZ(Di) is a section of the pullback bundle of WZ(Γi) by the restriction map
ri : DiG → ΓiG, and WZ(D′i) is a section of the pullback bundle of WZ(Γ ′i ) by the
restriction mapr′i : D′iG → ΓiG. Similarly, for i ∈ I+, WZ(D′i) defines a section of the
pullback line bundle of WZ(Γi) by r′i, and WZ(Di) is a section ofr∗i WZ(Γ ′i ).

1. LetΣ1 ∈M4 and suppose that the compactified space(Σ1)
c is simply connected, that is,

Σ1 is a subset ofS4 deleted several discsDi; i ∈ I− andD′i; i ∈ I+ with parameterized
boundariesΓ = ∪i∈I−Γi ∪ ∪i∈I+Γi. Let

Φ1 = ⊗
i∈I+

WZ(Di)⊗ ⊗
i∈I−

WZ(D′i), (4.7)

Φ1 is a section of the pullback bundle of WZ(Γ ′) by the restriction map
⋃

i∈I−
D′i ∪

⋃
i∈I+

Di


G→


⋃

i∈I−
Γi ∪

⋃
i∈I+

Γi


G.

Then WZ(Σ1) is defined by the duality relation

〈WZ(Σ1),Φ1〉 = WZ(S4) = 1. (4.8)

In fact, givenf ∈ Σ1G, takefi ∈ DiG, i ∈ I+, andf ′i ∈ D′iG, i ∈ I−, in such a way
thatf |Γi = fi|Γi, i ∈ I+, andf |Γi = f ′i |Γi, i ∈ I−. Let WZ(Di)(fi) = (fi, ui), i ∈ I+,
and WZ(D′j)(f

′
j) = (f ′j, u

′
j), j ∈ I−. By the definition

ui ∈ WZ(Γ ′i )ri(fi) and u′j ∈ WZ(Γ ′j)r′j(f ′j).

ThenΦ1((fi)i∈I+ , (f ′j)j∈I−) = ((fi)i∈I+ , (f ′j)j∈I− ,⊗i∈I+ui ⊗⊗j∈I−u′j). There is a

v ∈ ⊗
i∈I+

WZ(Γi)ri(fi) ⊗ ⊗
j∈I−

WZ(Γj)r′j(f
′
j)
= WZ(Γ)r(f ),
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such that〈v,⊗i∈I+ui ⊗ ⊗j∈I−u′j〉 = 1. The definition of WZ(Di) and WZ(D′i) imply
thatv is independent of{fi, f ′i }, but depends only onf .

Thus WZ(Σ1)(f ) = (f, v) is well defined as a section of the pullback bundle of
WZ(Γ) by r : Σ1G→ ΓG.

2. LetΣ0 = S3× [0,1]. We define

WZ(Σ0) = 1WZ((S3)′)⊗WZ(S3). (4.9)

Then we have

〈WZ(Σ0),WZ(D)⊗WZ(D′)〉 = 〈WZ(D),WZ(D′)〉 = 1.

This is concordant with the definition in Step (1).
3. We shall call aΣ1 ∈M4 described in (1) that is not of cylinder type abasic component.

Any Σ ∈M4 can be decomposed to a sum of several basic components that are patched
together by their parameterized boundaries:

Σ =
N⋃
k=1

Σk. (4.10)

The incoming boundaries ofΣk coincide, respectively, with the outgoing boundaries
of Σk−1 up to their orientations, that is,Γ k−1

i = (Γ k
i )
′, andΣ is obtained by patching

together these boundaries. Then there is a duality of WZ(Γ k−1
i ) = (pk−1

i )∗WZ((S3)′)
and WZ(Γ k

i ) = (pk
i )
∗WZ(S3). Using a suitable Morse function onΣ, we may suppose

that the parameterized boundariesΓi; i ∈ I− of Σ are all contained in the boundary∂Σ1
andΓi; i ∈ I+ are in∂ΣN . Then we define

WZ(Σ2 ∪Σ1) = 〈WZ(Σ2),WZ(Σ1)〉. (4.11)

Here〈·, ·〉 is the natural pairing (contraction) between the line bundles⊗i∈I−WZ(Γi)⊗
⊗j∈J1+

WZ(Γj) and⊗j∈J2−
WZ(Γj) ⊗ ⊗k∈J2+

WZ(Γk). Here we have written∂Σ1 =
∪j∈J1+

Γj ∪ ∪i∈I−Γi and∂Σ2 = ∪k∈J2+
Γk ∪ ∪j∈J2−

Γj, hence WZ(Σ2 ∪ Σ1) is a sec-
tion of the pullback line bundle of⊗i∈I−WZ(Γi) ⊗ ⊗k∈J2+

WZ(Γk) by the boundary
restriction map

r : (Σ2 ∪Σ1)G→
⋃
i∈I−

ΓiG ∪
⋃
k∈J2+

ΓkG,

see the explanation after A3 ofSection 2.2.

Lemma 4.1. LetΣ = Σ1 ∪Σ2 ∪Σ3. Let their boundaries be

∂Σ1 = γ1 ∪ Γ ′2 ∪ Γ3, ∂Σ2 = γ2 ∪ Γ ′3 ∪ Γ1 and ∂Σ3 = γ3 ∪ Γ ′1 ∪ Γ2.

Then we have

〈〈WZ(Σ1),WZ(Σ2)〉,WZ(Σ3)〉 = 〈WZ(Σ1), 〈WZ(Σ2),WZ(Σ3)〉〉. (4.12)

This is merely the problem of forming a tensor product of several line bundles, that is a
commutative operation.
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By virtue of this lemma we can form successively

WZ(Σk ∪Σ(k−1) ∪ · · · ∪Σ1) = 〈WZ(Σk), 〈WZ(Σ(k−1)), . . . ,WZ(Σ1)〉 · · · 〉.
(4.13)

This is independent of the order of partition and is also independent of how to decompose
Σ(k) = Σk ∪Σ(k−1) ∪ · · · ∪Σ1, but depends only onΣ(k). Therefore

WZ(Σ) = WZ(ΣN ∪Σ(N−1) ∪ · · · ∪Σ1)

is well defined as a section of the pullback line bundle of⊗i∈I−WZ(Γi) ⊗ ⊗i∈I+WZ(Γi)

by the boundary restriction map.
From the construction, WZ(Σ) satisfies axiom A3.
Now letΣ ∈M4 be compact without boundary. LetΣ1 andΣ2 be the basic components

such thatΣ = Σ1 ∪Γ Σ2. Suppose that

∂Σ1 = Γ =
⋃
i∈I

Γ ′i , ∂Σ2 = Γ =
⋃
i∈I

Γi.

Then from the definition of WZ(Σi), i = 1,2, we see that

WZ(Σ) = 〈WZ(Σ2),WZ(Σ1)〉 =
〈
⊗
i∈I

WZ(D′i), ⊗
i∈I

WZ(Di)

〉
=

∑
i∈I

1.

Thus we have the following proposition.

Proposition 4.1. For anyΣ ∈M4 which is compact without boundaryWZ(Σ) is a positive
integer.

Proposition 4.2. LetΣ ∈M4 and letΣij be obtained fromΣ by identifying the boundaries
Γi, i ∈ I−, andΓj, j ∈ I+, via pj · (pi)

−1 : Γi → Γj. Then

WZ(Σij ) = trij WZ(Σ), (4.14)

wheretrij are the trace maps(contraction) betweenr∗WZ(Γ ′i ) andr∗WZ(Γj) in the tensor
product⊗k∈I−WZ(Γ ′k)⊗⊗l∈I+WZ(Γl).

Connections on WZ(Γi) and WZ(Γ ′i ) are defined naturally as the induced connections
by (4.1) and (4.2). Obviously, WZ(Di) and WZ(D′i) are parallel with respect to these
connections. By the formulas of definitions(4.3), (4.8) and (4.13)we have a naturally
induced connection on WZ(Γ) with respect to which WZ(Σ) is parallel. Therefore axiom
A4 is verified.

Remark 4.1. LetΣ ∈M4 and the boundaryΓ = ∂Σ be such thatΓ = ∪i∈I+Γi∪∪i∈I−Γ ′i
with Γi a parameterized roundS3. Let r± denote, respectively, the restriction maps onto
⊗i∈I±(ΓiG). Then

WZ(Σ) : r∗−

(
⊗

i∈I−
WZ(Γi)

)
→ r∗+

(
⊗

i∈I+
WZ(Γi)

)
,
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WZ(Σ)(f ) forf ∈ ΣG is the higher-dimensional parallel transport along the “path”f [17].
WhenI+ = φ or I− = φ we call WZ(Σ)(f ) the higher-dimensional holonomy alongf .

4.3. Polyakov–Wiegmann formula

To see that the functor WZ satisfies the axioms of WZW model it remains for us to verify
the axiom A5, the Polyakov–Wiegmann formula on everyΣ ∈ M4. We have already
seen the Polyakov–Wiegmann formula onS4G, DG andD′G in (3.17), (3.37) and (3.40),
respectively.

Let Σ ∈M4 with parameterized boundariesΓ = ∪i∈I−Γi ∪ ∪j∈I+Γj. We shall use the
same notation as inSections 4.1 and 4.2. Then the product on each pullback line bundle
r∗i WZ(Γi), (r′)∗i WZ(Γi), r∗i WZ(Γ ′i ) and(r′)∗i WZ(Γ ′i ) is defined in an obvious manner,
and the non-vanishing sections WZ(Di) and WZ(D′i) for i ∈ I± satisfy the respective
Polyakov–Wiegmann formula

WZ(Di)( fg) = WZ(Di)(f ) ∗ WZ(Di)(g), etc.

The products on the line bundleS = ⊗j∈I−(r′j)
∗WZ(Γj)⊗⊗i∈I+(ri)∗WZ(Γi) and on the

line bundleS∗ = ⊗j∈I−(r′j)
∗WZ(Γ ′j) ⊗ ⊗i∈I+(ri)∗WZ(Γ ′i ) are defined by tensoring the

product on eachr∗i WZ(Γi), etc. We note also that the products are compatible with the
duality

〈α ∗ β, λ ∗ µ〉 = 〈α, λ〉 ∗ 〈β,µ〉
for α, β ∈ S andλ,µ ∈ S∗. Where the product in the right-hand side is that in WZ(φ) � C.

Now suppose thatΣ is a subset ofS4 deleted several discsDi, i ∈ I±. Letr : ΣG→ ΓG

be the restriction map. Then the product onr∗WZ(Γ) is derived from the product onS. In
fact, if we writer(f ) = (ri(fi); i ∈ I+, r′j(f

′
j); j ∈ I−) as in the argument ofSection 4.2,

then WZ(Γ)r(f ) = Sr′j(f
′
j),ri(fi)

, so the product onS yields that onr∗WZ(Γ), which is seen

to be independent of the choice of{fi, f ′j}.
Let Φ1 = ⊗i∈I+ WZ(Di) ⊗ ⊗j∈I− WZ(D′j). Φ1 is a section of the line bundleS∗ and

satisfies

Φ1(f
′g′) = Φ1(f

′) ∗Φ1(g
′)

for f ′, g′ ∈ ⊗i∈I+DiG ⊗ ⊗i∈I−D′iG. Since the section WZ(Σ) of r∗WZ(Γ) was defined
by the duality;〈WZ(Σ),Φ1〉 = WZ(S4), we have

〈WZ(Σ)( fg),Φ1(f
′g′)〉 =WZ(S4)( fg∨ f ′g′) = WZ(S4)(f ∨ f ′) ∗ WZ(S4)(g ∨ g′)

= 〈WZ(Σ)(f ),Φ1(f
′)〉 ∗ 〈WZ(Σ)(g),Φ1(g

′)〉
= 〈WZ(Σ)(f ) ∗ WZ(Σ)(g),Φ1(f

′g′)〉
for anyf, g ∈ ΣG and forf ′ andg′ that are extensions off andg to∪i∈I−D′i ∪ ∪j∈I+Dj,
respectively. Therefore we have

WZ(Σ)( fg) = WZ(Σ)(f ) ∗ WZ(Σ)(g)

for f, g ∈ ΣG.
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Let Σ = Σ1 ∪Γ Σ2. The product operations on(ri)∗WZ(Γi), i = 1,2, are compatible
with the contraction, in particular we have

〈WZ(Σ1)(f1) ∗ WZ(Σ1)(g1),WZ(Σ2)(f2) ∗ WZ(Σ2)(g2)〉
= WZ(Σ)(f ) ∗ WZ(Σ)(g), (4.15)

wheref, g ∈ ΣG andfi = f |Σ1, i = 1,2, etc. For a generalΣ ∈M4 the formula follows
from (4.15) and the definition of WZ(Σ) in (4.13). Thus we have proven the following
generalization of the Polyakov–Wiegmann formula.

Theorem 4.1.

WZ(Σ)(f ) ∗ WZ(Σ)(g) = WZ(Σ)( fg) (4.16)

for f, g ∈ ΣG.

5. Extensions of the group Ω3
0G

It is a well-known observation that the two-dimensional WZW action gives a geometric
description of the central extension̂LG of the loop groupLG. The associated group cocycle
yields a Lie algebra cocycle for the affine Kac–Moody algebra based on Lie(G) [2,6]. The
total space of theU(1)-principal bundlêLG was described as the set of equivalence classes
of pairs(f, c) ∈ D2G × U(1), whereD2 is the two-dimensional disc with boundaryS1.
The equivalence relation was defined on the basis of Polyakov–Wiegmann formula[12], as
it was so in our four-dimensional generalization treated inSection 3.

Associated to the line bundle WZ(S3) there exists aU(1)-principal bundle overΩ3
0G.

However, this bundle has not any natural group structure contrary to the case of the extension
of loop group. Instead, Mickelsson[10] gave an extension ofΩ3

0G by the Abelian group
Map(A3, U(1)), whereA3 is the space of connections onS3. In the following, we shall
explain after[9] two extensions ofΩ3

0G by the Abelian group Map(A3, U(1)) that are in
duality.

5.1. Mickelsson’s 2-cocycle

We consider the quotient space

Ω̂G = D′G×Map(A3, U(1))/ ∼′ , (5.1)

where∼′ is the equivalence relation defined by

(f ′, λ) ∼′ (g′, µ) if and only if f ′|S3 = g′|S3,

µ(A) = λ(A)χ′(f ′, g′) for any A ∈ A3. (5.2)

The projectionπ : Ω̂G → Ω3
0G is defined byπ([f ′, λ]) = f ′|S3. ThenΩ̂G becomes a

principal bundle overΩ3
0G with the structure group Map(A3, U(1)). Here theU(1) valued

transition functionχ′(f ′, g′) is considered as a constant function in Map(A3, U(1)).
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The group structure of̂ΩG is given by the Mickelsson’s 2-cocycle(3.9)onD′:

γD′(·; f ′, g′) for f ′, g′ ∈ D′G.

We note that since it is the coboundary of

i

24π3

∫
D′

α4(A; f ′),

γD′ is in fact a cocycle. We define the product onD′G×Map(A3, U(1)) by

(f ′, λ) ∗ (g′, µ) = (f ′g′, λ(·)µf ′(·)exp{2πiγD′(A; f ′, g′)}), (5.3)

where

µf ′(A) = µ((f ′|S3)−1A(f ′|S3)+ (f ′|S3)−1 d(f ′|S3)).

ThenD′G × Map(A3, U(1)) is endowed with a group structure and̂ΩG inherits it. The
group Map(A3, U(1)) is embedded as a normal subgroup in̂ΩG. ThusΩ̂G is an extension
of Ω3

0G by the Abelian group Map(A3, U(1)) [9,10].
We have another extension ofΩ3

0G by Map(A3, U(1)) if we consider

Ω̂′G = DG×Map(A3, U(1))/ ∼, (5.4)

where the equivalence relation∼ is defined by

(f, λ) ∼ (g, µ) if and only if f |S3 = g|S3,

µ(A) = λ(A)χ(f, g) for any A ∈ A3. (5.5)

The product onΩ̂′G is defined by the same way as above using the 2-cocycleγD(A; f, g)
of (3.9), andΩ̂′G becomes an extension ofΩ3

0G by the Abelian group Map(A3, U(1)).
The group Map(A3, U(1)) acts onC by λ · c = λ(0)c. Then the associated line bundle

to Ω̂G is WZ(S3) and that associated tôΩ′G is WZ((S3)′).

Remark 5.1. Consider the empty three manifoldφ and look it as the boundary ofS4.
Then we may follow the above definition to have an extension ofφG by Map(A3, U(1)).
It becomeŝφG = S4G×Map(A3, U(1))/ ∼, where

(F, λ) ∼ (G,µ) if and only if µ(A) = exp{2πiω(F, F−1G)}λ(A) for any A.

Then, since(F, λ) ∼ (F, λ(0)), it reduces tôφG = S4G × U(1)/ ∼, that is,φ̂G � U(1).
The product inφ̂G may be defined by the same formula as in(5.3), but we have seen that
it reduces to that of(3.16)because of the equalityγS4(A;F,G) = γ(F,G), (3.10).

The duality between two extensionŝΩG andΩ̂′G is given as follows. For [f ′, λ] ∈ Ω̂G

and [f, α] ∈ Ω̂′G, we put

〈[f ′, λ], [f, α]〉 = [f ∨ f ′, λ(0)α(0)], (5.6)
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where on the right-hand side we used the product in̂φG � U(1). In fact, suppose that
(f ′, λ) ∼′ (g′, µ) and(f, α) ∼ (g, β). Then we have

µ(A)β(A)= λ(A)α(A)exp{2πi[γD′(A; f ′, g′)+ γD(A; f, g)]}
= λ(A)α(A)exp{2πiγ(f ∨ f ′, g ∨ g′)}. (5.7)

Here we used the relation(3.11).
The Lie algebra cocycle corresponding to the group cocycleγD is calculated in[10]. It

is given by

c(A;X, Y)= i

12π2

∫
D

tr dA(dX dY + dY dX)

= i

12π2

∫
S3

tr(A(dX dY + dY dX)). (5.8)

The Lie algebra cocycle corresponding to the group cocycleγD′ is given by

i

12π2

∫
D′

tr dA(dX dY + dY dX)

= − i

12π2

∫
S3

tr(A(dX dY + dY dX)) = −c(A;X, Y). (5.9)

5.2. Remarks

1. The Euclidean action of a fieldϕ : Σ → G in WZW conformal field theory is defined
as

SΣ(ϕ) = − ik

12π2

∫
Σ

tr(dϕ−1 ∧ ∗dϕ)+ CΣ(ϕ), (5.10)

SΣ(ϕ) is invariant under a conformal change of metric and the second termCΣ(ϕ) is
required to obtain a conformal invariance of the action. This was shown by Fujii[5], and
first noticed by Witten[18] for the two-dimensional WZW model. The kinetic term in
(5.11)is linear with respect to the multiplication of the fields∫

Σ

tr(d( fg)−1 ∧ ∗d( fg)) =
∫
Σ

tr(df−1 ∧ ∗df)+
∫
Σ

tr(dg−1 ∧ ∗dg), (5.11)

and does not affect the Polyakov–Wiegmann formula. Hence we preferred only to deal
with the topological termCΣ(f ) [3].

2. The argument in this paper will be valid also for 2n-dimensional conformally flat man-
ifolds with boundary if the Lie groupG = SU(N) is such thatN ≥ n + 1, in this case
we haveπ2n(G) = 0 andπ2n+1(G) = Z. We shall also have the Abelian extensions of
Ω2n−1

0 Gby Map(A2n−1, U(1)). For that purpose we must have the Polyakov–Wiegmann
formula for the action functional

C2n+1(f ) = − i

(2n− 1)!(2πi)2(n−1)

∫
D2n+1

tr(g̃−1 dg̃)2n+1, g ∈ S2nG,
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see[5]. It seems that Polyakov–Wiegmann formula has not yet been proved for general
n larger than 3.

3. Losev et al.[8] discussed a four-dimensional WZW theory based on Kähler manifolds.
Their Lagrangian is defined by

− 1

4π

∫
Σ

ω ∧ tr(g−1∂g ∧ ∗g−1∂̄g)+ i

12π

∫
Σ×[0,1]

ω ∧ tr(g−1dg)3.

The theory has the finiteness properties for the one-loop renormalization of the vacuum
state. The authors studied the algebraic sector of their theory. The category of algebraic
manifolds is not well behaved under contraction, hence their theory does not fit our
axiomatic description.

4. S4 is obtained by patching together two quaternion spaces and we have the conjugation
q→ q−1 on it. Under the conjugation WZ(S4) is invariant but WZ(D) and WZ(D′) will
interchange. Since the conjugation inverts the orientation, WZ(Σ) is invariant under the
conjugation ofΣ. We can convince ourselves of this fact if we follow the argument to
define WZ(Σ) for aΣ ∈M4. This is the CPT invariance.
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