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Chiral Anomaly and Grassmannian Boundary Conditions

Tosiaki Kori

ABSTRACT. We discuss the index of the Euclidean Dirac operator D on the
unit four-ball subject to a boundary condition on S% which is induced by a
vector potential A in a canonical way. We show that this index is equal to the
index of the Dirac operator D4 coupled with A over the closed four-sphere.

Introduction

The chiral anomaly may be expressed in the following way. Consider a massless
Dirac fermion field 1 in S*, interacting with an external Yang-Mills field Al In
the second quantized theory the chiral current j£ = 1y*v5 is not conserved and
the chiral anomaly appears:

1
S €U Fyy Fog.

8;1]? = 167

It has a local divergence form:

1 2
0,58 = meuupaaﬂtfr(A,,(?,,AC, . EA,,A,,A(,).
A well-known formula yields
1 4. _Uvpo
Ny —n_ = ~ 39,2 d*ze trFuFos

where n.y is the dimension of the space of right— (resp. left—) handed zero mode
spinors and ny — n_ is nothing but the index of the half Dirac operator Dy =
D+ A. By the divergence formula this is reduced to the third Chern number of the
bundle, which is equal to the instanton number of the connected component of the
configuration space A/G to which A belongs.

On the other hand, when we consider a field 1 on the unit ball in R* we must
also take the surface effects into consideration, and the notion of the index depends
on the boundary condition which is imposed on the equator. Various classes of
boundary conditions were investigated by many authors and it seems nowadays
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36 TOSIAKI KORI

that generalized Atiyah-Patodi-Singer boundary conditions are most adequate [2,
3].

The generalized APS boundary conditions form an infinite—dimensional Grass-
mannian manifold Gr(S®) of certain spaces of square-integrable spinors on the
equator S° (see e.g. [8]). The space G7(S%) is a geometrical object that is de-
termined by the Dirac operator D, hence by the Riemannian metric on $4. J.
Mickelsson [5] showed that the gauge transformation group G acts on the Grass-
mannian. We discussed the relation between the gauge transformation group, the
space of connections (i.e., of vector potentials) and the Grassmannian in [4]. We
showed that to each vector potential A corresponds an element Wa of Gr(S?%),
defined as the image of the base point HY € Gr(S®) under the map giving the
homotopy equivalence of .A/G and Q*(SU(N)).

In this Note we discuss the index of D on the unit ball with the boundary
condition on 5% given by W, and prove that it is equal to the index of D, (on
5%). The influence of the vector potential is absorbed in the boundary condition
(see Theorems 4 and 5).

This result follows from the Atiyah-Patodi-Singer Theorem (see [1]) in the case
of a product metric structure near the eguator S3. Even in our classical situation,
however, the metric is not product, but depends on the normal coordinate. Our
proof does not use the Atiyah-Patodi-Singer Theorem and covers this more general
situation.

Acknowledgement. The author wishes to express his gratitude to Professor B.
Booss of Roskilde University and Professor K. P. Wojciechowski of IUPUI for their
interest in this study, and to the referee for the comments, which helped to improve
the presentation. The author thanks also Professor M. Guest of Tokyo Metropolitan
University for his assistance in the text editing.

1. Preliminaries on the Dirac operator

We follow the presentation from [4]. Let A* denote two half-spin representa-
tions of Spin(4), dim A* = 2. Let S = C? x A be the spinor bundle on C2. The
corresponding bundle S* (resp. S7) is called the even (resp. odd) spinor bundle.
The (total) Dirac operator is defined by

D:=cod,

where d : § — S ®T*C? ~ S ® T'C? denotes the exterior differentiation and c:
S®TC? — S the bundle homomorphism coming from the Clifford multiplication.
By means of the decomposition § = S* & S~ the Dirac operator has the chiral
decomposition

0 Dt oo . o0 -
D:(D O>:C’ (C%5T@s ) —C=(C* st 57).

The (half) operators D and D' have the following coordinate expressions
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Let
vV=2z1—+ —-C?—— = —Z i +Z i
- 821 “2 (922 ’ €= 2 621 ! 822 )
The radial vector field is defined by
0 1 _
a_n—'z—];—l(l/—*—l/), |Zl7£0
We also introduce
1 1 1
6 = U = — — € _ ).
3 2\/_—1(V V>’ b2 2\/?1—(6 6)» 01 2(6-1-6)

The quartet { %, TiTei’ i=1,2,3} forms an orthogonal frame on C?\ 0.
Now the Dirac operator can be expressed in the following way

8 51
D=(5-)" Vg +§‘m"” Vg, ld#0,

[E]

where V., denotes the covariant differentiation into the direction of v and - denotes
the Clifford multiplication. The second term gives the (tangential) Dirac operator
on the latitude B, = {|z| = r}.

We denote by 7o the Clifford multiplication by the radial vector %. Let us
notice that vy interchanges the chirality:

Yo:ST®ST — S @ST, v =1

In particular, v has the following coordinate expression

1 [z —= 1 /2 z
st () = (B ),
Y+ = ol E <z2 . 7- = Yol EREEE
On {|z| # 0}, the Dirac operators D and D' have the following polar decomposi-
tions:
9] 3] 3
D= — - d D = =~ )y
where the tangential (nonchiral) Dirac operator ¢ is given by
:} 1 —+/—163 €
‘Z| —€ \/:':193

3

P =—(r) {Z(Tgm-vﬁei

=1
We found the eigenvalues of @ in [4] (see also [7]):

THEOREM. The eigenvalues of @ restricted to B = {|z| = 1} are
T 3+r

2’ 2’
with multiplicity (r + 1)(r +2).

r=20,1,2,...
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2. Static vector potentials

Let M be a domain in C? and E = M x C¥ be a vector bundle. Let A be an
su(IN)-gauge potential on M. Locally A is an su(N)-valued 1-form acting on the
spinors by the Clifford multiplication ¢ such that

A:T(ST®E) —TI(S ®E).

Thus A is given by

A(z) = Ardzy + Asdzy + Aydz) + Asdzy = (21 —AA§> ’
2 T

where the entries A; etc. are N x N matrices. A SU(N)-gauge transformation
acts by the rule

(f - A)(2) = F(2)AR) () + f(2)df ' (2).

Let n*, 65, €", € denote the dual frame of { %, ﬁ@g, |71|e, ﬁ@}, ie.
1 v—1
n* = m(y* +7"), 03 = W(V* ~ "),

1 ‘ 1
V' = m(%dh + Zad2g), € = m(_@dzl + z1dz2).

It is convenient to write a 1-form ¢ on C?\ {0} in the form
@ =byn* +b36] +bye* +b_e*

with

— 9 _ 03 _ € _ €

Then any vector potential A acting on spinors on M \ {0} can be written as

— b : b \/“1A3 —A_
A=y, (A, + A% with A —< A, _\/_—1143).

Let A, denote the space of the vector potentials that are static near the equator
B = {|z| = 1}, that is A satisfies the following conditions (1) and (2) in a bi—collar
neighbourhood of B:

1. A, = 5% (z1A1 + 2949 +21AT+72A§) =0,
2. Ab(2) = ﬁAb(ﬁ)
Then A is isomorphic to the space A3 of gauge potentials on the 3-sphere B.

The gauge transformation group Gs is seen to be the mapping group Q3G with
G := SU(N). Let h € Q3G and extend it to a collar neighbourhood of B by h(ﬁ),

which we denote also by h. Then the pure gauge potential h~1dh is static. In
addition, we have h~1dh = (y|S*)(h~1dh)’.
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3. Gauge invariance of the spectral projection

Let Dy : C*°(M,ST ® E) — C*(M,S~ ® E) be the Dirac operator coupled
with A € A,ie. Dy = D ®Ig+ 1g ® A, which we shall abbreviate to D + A.
The vector potential A is transformed to A, = g~'Ag + g~ 'dg under the action of
a gauge transformation g € G , and we have Dy, = 9 1D ag. For a static vector
potential A € A, we have a polar decomposition of D4 on the equator B:

W Da=D+A=r(5~Pa), Pa=-A"

Here @ is an abbreviation of § ® 15. Let g € G. We have then (4,)" = g71Abg +
(9~ 'dg)®, where (A,)® is defined by the decomposition

Da, = (5 -0+ (45)").

We denote by IT> the orthogonal projection of L2(S%, S* ® E|S®) onto the sub-
space spanned by the eigenspinors corresponding to the non—negative eigenvalues

of #. The corresponding projection defined by the eigensubspace of 4 = J — A® is
denoted by II>(A).

PROPOSITION 1. For any A € Ay the spectral projection II>(Ag) is gauge
nvariant, t.e.
II>(Ay) = g7 1> (A)g

for any g € Q3G, which we extend to a bi-collar neighbourhood of B by g(-%).
[2]

In fact we have
da, = 9 'Pag
for A € As; and g € 3G. Hence the eigenvalues of § A, coincide with those of @4 .

NoTE. For a non—static vector potential, the operator D4 does not have the
representation (1) on the equator. Hence our proof does not cover this more gen-
eral case. Note that in [1] the authors assume a cylindrical neighbourhood of the
boundary with all structures being product near the boundary, so that the polar
decomposition is always obtainable in their case.

4. Grassmannian manifold of spinors on $°

In the following, we show that the index of the gauge coupled Dirac operator
D4 on S* is equal to that of the Dirac operator D ® 1 on the unit ball R = {|z| <
1} ¢ C? equipped with a Grassmannian boundary condition which corresponds to
the given gauge potential A.

Here the Dirac operator on S* is defined as follows. We consider S as a
manifold obtained by patching C2 and C2 together by w = w(z) = 15z Here, c?
and C2 are used as local coordinate neighbourhoods. Then B = {|z| = 1} ~ % is
the equator.

An even spinor ¢ € S* on §*is a pair of p € C°(C2, At) and § € C=(C2,A™)
patched together by @ = |z|3yp. The factor |z|* is due to the conformal factor of
the transformation w = w(z).

In the local coordinate C2, we have

D:C®(C%, A7) — C=(C2, A™).
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The last equation follows from Theorem 6 and
HZ (A) = h¥1H2h,
which is a consequence of J4 = h~1h.
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