kori-homma 本文へジャンプ
KORI'S OFFICE AND HOMMA'S OFFICE


本間泰史 経歴・論文など


Resarchmapに詳しいことが載っています
https://researchmap.jp/read0127036

経歴
  • 1990/3 東京都立両国高等学校卒業
  • 1990/4 早稲田大学理工学部数学科へ入学
  • 1994/4 早稲田大学大学院理工学研究科数理科学専攻修士課程入学
  • 1996/4 早稲田大学大学院理工学研究科数理科学専攻博士後期課程入学
  • 1999/4-2000/3 早稲田大学本庄高等学院非常勤講師
  • 2000/3 博士後期課程退学
  • 2000/4-2003/3 早稲田大学理工学部助手
  • 2001/3 博士号(理学)取得.(課程博士,早稲田大学)
  • 2003/4-2005/3 日本学術振興会特別研究員(所属大学:東京理科大学理工学部)
  • 2004/9-2005/3 東京理科大学理工学部 嘱託講師
  • 2005/4-2007/3 東京理科大学理工学部 嘱託助手(数学科)
  • 2007/4 早稲田大学理工学術院 准教授 (基幹理工学部数学科)
  • 2012/4 早稲田大学理工学術院 教授 (基幹理工学部数学科)
  • 2013/4-2014/3 ドイツ Stuttgart大学 訪問研究員
論文・本
タイトル journalなど
17 (with T. Tomihisa) The spinor and tensor fields with higher spin on spaces of constant curvature Annals of Global Analysis and Geometry, vol 60, No.4, 829-861 (2021, Nov),
(Open Access)The spinor and tensor fields with higher spin on spaces of constant curvature SpringerLink
16 (with T. Tomihisa) Spectra of the Rarita-Schwinger operator on some symmetric spaces Journal of Lie theory Vol.31, no 1, 249-264
math arxiv https://arxiv.org/abs/2001.06167
15 (with D. Eelbode) Pizzetti formula on the Grassmannian of 2-planes Annals of Global Analysis and Geometry,
Vol.58, No.2, 325-350 (2020)
14 (with U. Semmelmann)
The kernel of the Rarita-Schwinger operators on Riemannian spin manifolds
Communications in Mathematical Physics, Vol370, 853-871 (2019)
13 Spin Geometry -- Mathematics with spinor fields--
スピン幾何学 -スピノール場の数学-(2016)
森北出版
12 Twisted Dirac operators and generalized gradients
(2015)
Annals o of Global Analysis and Geometry,
Vol.50, No.2 (2016) 101-127
11 Estimating the eigenvalues on Quaternionic K\"ahler Manifolds
International Journal of Mathematics. Vol. 17, No. 6 (2006) 665-691.
10 Bochner-Weitzenb\"ock formula and curvature actions
on Riemannian manifolds
Transactions of the AMS. 358, 87-114 (2006).
9 Universal Bochner-Weitzenb\"ock formulas
for hyper-K\"ahlerian gradients
``Advances in Analysis and Geometry'',
Trend in Math. Birkhauser (2004), 189-208.
8 Casimir elements and Bochner identities
on Riemannian manifolds
Progress in Mathemtical Physics 34.
'Clifford algbras applications to mathematics,
physics and engineering', (2004) 185-200 Birkhauser
7 Bochner identities for K\"ahlerian gradients Mathematische Annalen. 333 No.1 (2005), 181-211.
6 The Higher Spin Dirac Operators on 3-Dimensional Manifold
Tokyo J. Math. 24 No.2 (2001) 579-596
5 Spherical harmonic polynomials for higher bundles ``Int. Conf. on Clifford Analysis, Its Appl.
and Related Topics. Beijing"
Advances in Applied Clifford Algebras 11(S2), 117-126 (2001).
4 Spinor-Valued and Clifford Algebra-Valued
Harmonic Polynomials
J. Geom. Phys. 37 No. 3 (2001), 201-215.
3 A representation of Spin(4) on the eigenspinors
of the Dirac operator on S3
Tokyo J. Math. 23 No. 2 (2000), 453-472.
2 (with K. Fujii and T. Suzuki)
Submodels of Nonlinear Grassmann Sigma Models
in Any Dimension and Conserved Currents, Exact Solutions
Moden Physics Letter A, Vol14 (1999) 919-928.
1 with K. Fujii and T. Suzuki)
Nonlinear Grassmann Sigma Models in Any Dimension
and An Infinite Number of Conserved Currents
Physics Letter B 438 (1998) 290-294.